Intracellular angiopoietin-1 promotes TKI-resistance via activation of JAK/STAT5 pathway in chronic myeloid leukemia

Hochhaus A, Larson RA, Guilhot F, Radich JP, Branford S, Hughes TP, et al. Long-term outcomes of imatinib treatment for chronic myeloid leukemia. N Engl J Med. 2017;376:917–27.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bower H, Bjorkholm M, Dickman PW, Hoglund M, Lambert PC, Andersson TM. Life expectancy of patients with chronic myeloid leukemia approaches the life expectancy of the general population. J Clin Oncol. 2016;34:2851–7.

Article  CAS  PubMed  Google Scholar 

Minciacchi VR, Kumar R, Krause DS. Chronic myeloid leukemia: a model disease of the past. Cells. 2021;10:117.

Article  PubMed  PubMed Central  Google Scholar 

Braun TP, Eide CA, Druker BJ. Response and resistance to BCR-ABL1-targeted therapies. Cancer Cell. 2020;37:530–42.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mitchell R, Hopcroft LEM, Baquero P, Allan EK, Hewit K, James D, et al. Targeting BCR-ABL-independent TKI resistance in chronic myeloid leukemia by mTOR and autophagy inhibition. J Natl Cancer Inst. 2018;110:467–78.

Article  CAS  PubMed  Google Scholar 

Cortes JE, Kim DW, Pinilla-Ibarz J, le Coutre P, Paquette R, Chuah C, et al. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med. 2013;369:1783–96.

Article  CAS  PubMed  Google Scholar 

Bavaro L, Martelli M, Cavo M, Soverini S. Mechanisms of disease progression and resistance to tyrosine kinase inhibitor therapy in chronic myeloid leukemia: an update. Int J Mol Sci. 2019;20:6141.

Article  CAS  PubMed Central  Google Scholar 

Chu S, McDonald T, Lin A, Chakraborty S, Huang Q, Snyder DS, et al. Persistence of leukemia stem cells in chronic myelogenous leukemia patients in prolonged remission with imatinib treatment. Blood. 2011;118:5565–72.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hashiyama M, Iwama A, Ohshiro K, Kurozumi K, Yasunaga K, Shimizu Y, et al. Predominant expression of a receptor tyrosine kinase, TIE, in hematopoietic stem cells and B cells. Blood. 1996;87:93–101.

Article  CAS  PubMed  Google Scholar 

Teufel M, Seidel H, Kochert K, Meinhardt G, Finn RS, Llovet JM, et al. Biomarkers associated with response to regorafenib in patients with hepatocellular carcinoma. Gastroenterology. 2019;156:1731–41.

Article  CAS  PubMed  Google Scholar 

Fagiani E, Lorentz P, Kopfstein L, Christofori G. Angiopoietin-1 and -2 exert antagonistic functions in tumor angiogenesis, yet both induce lymphangiogenesis. Cancer Res. 2011;71:5717–27.

Article  CAS  PubMed  Google Scholar 

Liu XH, Bai CG, Yuan Y, Gong DJ, Huang SD. Angiopoietin-1 targeted RNA interference suppresses angiogenesis and tumor growth of esophageal cancer. World J Gastroenterol. 2008;14:1575–81.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Torimura T, Ueno T, Kin M, Harada R, Taniguchi E, Nakamura T, et al. Overexpression of angiopoietin-1 and angiopoietin-2 in hepatocellular carcinoma. J Hepatol. 2004;40:799–807.

Article  CAS  PubMed  Google Scholar 

Cheng CL, Hou HA, Jhuang JY, Lin CW, Chen CY, Tang JL, et al. High bone marrow angiopoietin-1 expression is an independent poor prognostic factor for survival in patients with myelodysplastic syndromes. Br J Cancer. 2011;105:975–82.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee CY, Tien HF, Hu CY, Chou WC, Lin LI. Marrow angiogenesis-associated factors as prognostic biomarkers in patients with acute myelogenous leukaemia. Br J Cancer. 2007;97:877–82.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schliemann C, Bieker R, Padro T, Kessler T, Hintelmann H, Buchner T, et al. Expression of angiopoietins and their receptor Tie2 in the bone marrow of patients with acute myeloid leukemia. Haematologica. 2006;91:1203–11.

CAS  PubMed  Google Scholar 

Grenga I, Kwilas AR, Donahue RN, Farsaci B, Hodge JW. Inhibition of the angiopoietin/Tie2 axis induces immunogenic modulation, which sensitizes human tumor cells to immune attack. J Immunother Cancer. 2015;3:52.

Article  PubMed  PubMed Central  Google Scholar 

Atesoglu EB, Tarkun P, Mehtap O, Demirsoy ET, Atalay F, Maden M, et al. Serum angiopoietin levels are different in acute and chronic myeloid neoplasms: angiopoietins do not only regulate tumor angiogenesis. Indian J Hematol Blood Transfus. 2016;32:162–7.

Article  PubMed  Google Scholar 

Ichim CV. Kinase-independent mechanisms of resistance of leukemia stem cells to tyrosine kinase inhibitors. Stem Cells Transl Med. 2014;3:405–15.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aranda-Tavio H, Recio C, Martin-Acosta P, Guerra-Rodriguez M, Brito-Casillas Y, Blanco R, et al. JKST6, a novel multikinase modulator of the BCR-ABL1/STAT5 signaling pathway that potentiates direct BCR-ABL1 inhibition and overcomes imatinib resistance in chronic myelogenous leukemia. Biomed Pharmacother. 2021;144:112330.

Article  CAS  PubMed  Google Scholar 

Huang H, Bhat A, Woodnutt G, Lappe R. Targeting the ANGPT-TIE2 pathway in malignancy. Nat Rev Cancer. 2010;10:575–85.

Article  CAS  PubMed  Google Scholar 

Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K, et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 2004;118:149–61.

Article  CAS  PubMed  Google Scholar 

Parikh SM. Targeting Tie2 and the host vascular response in sepsis. Sci Transl Med. 2016;8:335fs339.

Article  Google Scholar 

Tolomeo M, Meli M, Grimaudo S. STAT5 and STAT5 inhibitors in hematological malignancies. Anticancer Agents Med Chem. 2019;19:2036–46.

Article  CAS  PubMed  Google Scholar 

Gleixner KV, Schneeweiss M, Eisenwort G, Berger D, Herrmann H, Blatt K, et al. Combined targeting of STAT3 and STAT5: a novel approach to overcome drug resistance in chronic myeloid leukemia. Haematologica. 2017;102:1519–29.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dong B, Liang Z, Chen Z, Li B, Zheng L, Yang J, et al. Cryptotanshinone suppresses key onco-proliferative and drug-resistant pathways of chronic myeloid leukemia by targeting STAT5 and STAT3 phosphorylation. Sci China Life Sci. 2018;61:999–1009.

Article  CAS  PubMed  Google Scholar 

Pinz S, Unser S, Rascle A. Signal transducer and activator of transcription STAT5 is recruited to c-Myc super-enhancer. BMC Mol Biol. 2016;17:10.

Article  PubMed  PubMed Central  Google Scholar 

Warsch W, Grundschober E, Sexl V. Adding a new facet to STAT5 in CML: multitasking for leukemic cells. Cell Cycle. 2013;12:1813–4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bibi S, Arslanhan MD, Langenfeld F, Jeanningros S, Cerny-Reiterer S, Hadzijusufovic E, et al. Co-operating STAT5 and AKT signaling pathways in chronic myeloid leukemia and mastocytosis: possible new targets of therapy. Haematologica. 2014;99:417–29.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Juen L, Brachet-Botineau M, Parmenon C, Bourgeais J, Herault O, Gouilleux F, et al. New inhibitor targeting signal transducer and activator of transcription 5 (STAT5) signaling in myeloid leukemias. J Med Chem. 2017;60:6119–36.

Article  CAS  PubMed  Google Scholar 

Jiang X, Cheng Y, Hu C, Zhang A, Ren Y, Xu X. MicroRNA-221 sensitizes chronic myeloid leukemia cells to imatinib by targeting STAT5. Leuk Lymphoma. 2019;60:1709–20.

Article  CAS  PubMed  Google Scholar 

Orlova A, Wagner C, de Araujo ED, Bajusz D, Neubauer HA, Herling M, et al. Direct targeting options for STAT3 and STAT5 in cancer. Cancers. 2019;11:1930.

Article  CAS  PubMed Central  Google Scholar 

Mirmohammadsadegh A, Hassan M, Bardenheuer W, Marini A, Gustrau A, Nambiar S, et al. STAT5 phosphorylation in malignant melanoma is important for survival and is mediated through SRC and JAK1 kinases. J Investig Dermatol. 2006;126:2272–80.

Article  CAS  PubMed  Google Scholar 

Ku M, Wall M, MacKinnon RN, Walkley CR, Purton LE, Tam C, et al. Src family kinases and their role in hematological malignancies. Leuk Lymphoma. 2015;56:577–86.

Article  CAS  PubMed  Google Scholar 

Okutani Y, Kitanaka A, Tanaka T, Kamano H, Ohnishi H, Kubota Y, et al. Src directly tyrosine-phosphorylates STAT5 on its activation site and is involved in erythropoietin-induced signaling pathway. Oncogene. 2001;20:6643–50.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif