Predicting Future Depressive Episodes from Resting-State fMRI with Generative Embedding

Abstract

After a first episode of major depressive disorder (MDD), there is substantial risk for a long-term remitting-relapsing course. Prevention and early interventions are thus critically important. Various studies have examined the feasibility of detecting at-risk individuals based on out-of-sample predictions about the future occurrence of depression. However, functional magnetic resonance imaging (MRI) has received very little attention for this purpose so far. Here, we explored the utility of generative models (i.e. different dynamic causal models, DCMs) as well as functional connectivity (FC) for predicting future episodes of depression in never-depressed adults, using a large dataset (N=906) of task-free ("resting state") fMRI data from the UK Biobank. Connectivity analyses were conducted using timeseries from pre-computed spatially independent components of different dimensionalities. Over a three year period, 50% of participants showed indications of at least one depressive episode, while the other 50% did not. Using nested cross-validation for training and a held-out test set (80/20 split), we systematically examined the combination of 8 connectivity feature sets and 17 classifiers. We found that a generative embedding procedure based on combining regression DCM (rDCM) with a support vector machine (SVM) enabled the best (and statistically significant) predictions, both on the training and the test set. However, on the test set, rDCM (62% accuracy) was only slightly superior to SVM predictions based on FC (59% accuracy). Interpreting model predictions based on SHAP (SHapley Additive exPlanations) values suggested that the most predictive connections were widely distributed and not confined to specific networks; the biological interpretability of predictions was aggravated by the use of IC timeseries. Overall, our analyses suggest (i) ways of improving future fMRI-based generative embedding approaches for the early detection of individuals at-risk for depression and that (ii) achieving accuracies of clinical utility may require combination of fMRI with other data modalities.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

This work was supported by the Rene and Susanne Braginsky Foundation (KES), the ETH Foundation (KES), and project grant 320030_179377 by the Swiss National Science Foundation (KES).

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

UK Biobank

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

All data produced in the present study are available upon reasonable request to the authors

留言 (0)

沒有登入
gif