Promoters for the expression of food-grade selectable markers in lactic acid bacteria and bifidobacteria

Allison GE, Klaenhammer TR (1996) Functional analysis of the gene encoding immunity to lactacin F, lafI, and its use as a Lactobacillus-specific, food-grade genetic marker. Appl Environ Microbiol 62:4450–4460. https://doi.org/10.1128/aem.62.12.4450-4460.1996

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arqués JL, Rodríguez JM, Gasson MJ, Horn N (2008) Immunity gene pedB enhances production of pediocin PA-1 in naturally resistant Lactococcus lactis strains. J Dairy Sci 91:2591–2594. https://doi.org/10.3168/jds.2007-0759

Article  CAS  PubMed  Google Scholar 

Capurso L (2019) Thirty years of Lactobacillus rhamnosus GG. J Clinl Gastroenterol 53:S1–S41. https://doi.org/10.1097/MCG.0000000000001170

Article  CAS  Google Scholar 

de Andrés J, Jiménez E, Chico-Calero I, Fresno M, Fernández L, Rodríguez JM (2018) Physiological translocation of lactic acid bacteria during pregnancy contributes to the composition of the milk microbiota in mice. Nutrients 10:14. https://doi.org/10.3390/nu10010014

Article  CAS  Google Scholar 

de Ruyter PG, Kuipers OP, de Vos WM (1996) Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl Environ Microbiol 62:3662–3667. https://doi.org/10.1128/aem.62.10.3662-3667.1996

Article  PubMed  PubMed Central  Google Scholar 

Fijan S (2014) Microorganisms with claimed probiotic properties: an overview of recent literature. Int J Environ Res Public Health 11:4745–4767. https://doi.org/10.3390/ijerph110504745

Article  PubMed  PubMed Central  Google Scholar 

Garde S, Tomillo J, Gaya P, Medina M, Nuñez M (2002) Proteolysis in hispanico cheese manufactured using a mesophilic starter, a thermophilic starter, and a bacteriocin-producing Lactococcus lactis subsp. lactis INIA 415 adjunct culture. J Agric Food Chem 50:3479–3485. https://doi.org/10.1021/jf011291d

Article  CAS  PubMed  Google Scholar 

Gaya P, Peirotén A, Landete JM (2020) Expression of a β-glucosidase in bacteria with biotechnological interest confers them the ability to deglycosylate lignans and flavonoids in vegetal foods. Appl Microbiol Biotechnol 104:4903–4913. https://doi.org/10.1007/s00253-020-10588-x

Article  CAS  PubMed  Google Scholar 

Gosalbes MJ, Esteban CD, Galán JL, Pérez-Martinez G (2000) Integrative food-grade expression system based on the lactose regulon of Lactobacillus casei. Appl Environ Microbiol 66:4822–4828. https://doi.org/10.1128/aem.66.11.4822-4828.2000

Article  CAS  PubMed  PubMed Central  Google Scholar 

Israr B, Kim J, Anam S, Anjum FR (2018) Lactic acid bacteria as vectors: a novel approach for mucosal vaccine delivery. J Clin Cell Immunol 9:548. https://doi.org/10.4172/2155-9899.1000548

Article  Google Scholar 

Joosten HM, Nuñez M, Devreese B, van Beeumen J, Marugg JD (1996) Purification and characterization of enterocin 4, a bacteriocin produced by Enterococcus faecalis INIA 4. Appl Environ Microbiol 62:4220–4223. https://doi.org/10.1128/aem.62.11.4220-4223.1996

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R, Tarchini R, Peters SA, Sandbrink HM, Fiers MW, Stiekema W, Lankhorst RM, Bron PA, Hoffer SM, Groot MN, Kerkhoven R, de Vries M, Ursing B, de Vos WM, Siezen RJ (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci USA 100:1990–1995. https://doi.org/10.1073/pnas.0337704100

Article  CAS  PubMed  PubMed Central  Google Scholar 

Koivula T, Sibakov M, Palva I (1991) Isolation and characterization of Lactococcus lactis subsp. lactis promoters. Appl Environ Microbiol 57:333–340. https://doi.org/10.1128/aem.57.2.333-340.1991

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuipers OP, Beerthuyzen MM, de Ruyter PG, Luesink EJ, de Vos WM (1995) Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J Biol Chem 270:27299–27304. https://doi.org/10.1074/jbc.270.45.27299

Article  CAS  PubMed  Google Scholar 

Kuipers OP, de Ruyter PGGA, Kleerebeze M, de Vos WM (1998) Quorum sensing-controlled gene expression in lactic acid bacteria. J Biotech 64:15–21. https://doi.org/10.1016/S0168-1656(98)00100-X

Article  CAS  Google Scholar 

Landete JM (2017) A review of food-grade vectors in lactic acid bacteria: from the laboratory to their application. Crit Rev Biotechnol 37:296–308. https://doi.org/10.3109/07388551.2016.1144044

Article  CAS  PubMed  Google Scholar 

Landete JM, Arqués JL, Peirotén A, Langa S, Medina M (2014) An improved method for the electrotransformation of lactic acid bacteria: a comparative survey. J Microbiol Meth 105:130–133. https://doi.org/10.1016/j.mimet.2014.07.022

Article  CAS  Google Scholar 

Landete JM, Langa S, Escudero C, Peirotén A, Arqués JL (2020) Fluorescent detection of nisin by genetically modified Lactococcus lactis strains in milk and a colonic model: application of whole-cell nisin biosensors. J Biosci Bioeng 129:435–440. https://doi.org/10.1016/j.jbiosc.2019.10.011

Article  CAS  PubMed  Google Scholar 

Landete JM, Langa J, Revilla C, Margolles A, Medina M, Arqués J (2015) Use of anaerobic green fluorescent protein versus green fluorescent protein as reporter in lactic acid bacteria. Appl Microbiol Biotechnol 99:6865–6877. https://doi.org/10.1007/s00253-015-6770-3

Article  CAS  PubMed  Google Scholar 

Landete JM, Peirotén A, Medina M, Arqués JL (2017) Labeling Listeria with anaerobic fluorescent protein for food safety studies. J Dairy Sci 100:113–117. https://doi.org/10.3168/jds.2016-11226

Article  CAS  PubMed  Google Scholar 

Landete JM, Peirotén A, Rodríguez E, Margolles A, Medina M, Arqués JL (2014) Anaerobic green fluorescent protein as a marker of Bifidobacterium strains. Int J Food Microbiol 175:6–13. https://doi.org/10.1016/j.ijfoodmicro.2014.01.008

Article  CAS  PubMed  Google Scholar 

Langa S, Landete JM, Martín-Cabrejas I, Rodríguez E, Arqués JL, Medina M (2013) In situ reuterin production by Lactobacillus reuteri in dairy products. Food Control 33:200–206. https://doi.org/10.1016/j.foodcont.2013.02.035

Article  CAS  Google Scholar 

Langa S, Arqués JL, Medina M, Landete JM (2017) Coproduction of colicin V and lactic acid bacteria bacteriocins in lactococci and enterococci strains of biotechnological interest. J Appl Microbiol 122:1159–1167. https://doi.org/10.1111/jam.13439

Article  CAS  PubMed  Google Scholar 

Leroy F, De Vuyst L (2004) Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci Technol 2:67–78. https://doi.org/10.1016/j.tifs.2003.09.004

Article  CAS  Google Scholar 

Li R, Takala TM, Qiao M, Xu H, Saris PEJ (2011) Nisin-selectable food-grade secretion vector for Lactococcus lactis. Biotechnol Lett 33:797–803. https://doi.org/10.1007/s10529-010-0503-6

Article  CAS  PubMed  Google Scholar 

Lu W, Kong J, Kong W (2013) Construction and application of a food-grade expression system for Lactococcus lactis. Mol Biotechnol 54:170–176. https://doi.org/10.1007/s12033-012-9558-z

Article  CAS  PubMed  Google Scholar 

MacCormick CA, Griffin HG, Gasson MJ (1995) Construction of a food-grade host/vector system for Lactococcus lactis based on the lactose operon. FEMS Microbiol Lett 127:105–109. https://doi.org/10.1111/j.1574-6968.1995.tb07457.x

Article  CAS  PubMed  Google Scholar 

Mazé A, Boël G, Zúñiga M, Bourand A, Loux V, Yebra MJ, Monedero V, Correia K, Jacques N, Beaufils S, Poncet S, Joyet P, Milohanic E, Casaregola S, Auffray Y, Pérez-Martínez G, Gibrat JF, Zagorec M, Francke C, Hartke A, Deutscher J (2010) Complete genome sequence of the probiotic Lactobacillus casei strain BL23. J Bacteriol 192:2647–2648. https://doi.org/10.1128/JB.00076-10

Article  CAS  PubMed  PubMed Central  Google Scholar 

McAuliffe O, Hill C, Ross RP (2000) Identification and overexpression of ltnl, a novel gene which confers immunity to the two-component lantibiotic lacticin 3147. Microbiology (reading) 146:129–138. https://doi.org/10.1099/00221287-146-1-129

Article  CAS  Google Scholar 

Mierau I, Kleerebezem M (2005) 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl Microbiol Biotechnol 68:705–717. https://doi.org/10.1007/s00253-005-0107-6

Article  CAS  PubMed  Google Scholar 

Montenegro-Rodríguez C, Peirotén A, Sanchez-Jimenez A, Arqués JL, Landete JM (2015) Analysis of gene expression of bifidobacteria using as the reporter an anaerobic fluorescent protein. Biotechnol Lett 37:1405–1413. https://doi.org/10.1007/s10529-015-1802-8

Article  CAS  PubMed  Google Scholar 

Morales-Contreras JA, Rodríguez-Pérez JE, Álvarez-González CA, Martínez-López MC, Juárez-Rojop IE, Ávila-Fernández A (2021) Potential applications of recombinant bifidobacterial proteins in the food industry, biomedicine, process innovation and glycobiology. Food Sci Biotechnol 30:1277–1291. https://doi.org/10.1007/s10068-021-00957-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peirotén A, Arqués JL, Medina M, Rodríguez-Mínguez E (2018) Bifidobacterial strains shared by mother and child as source of probiotics. Benef Microbes 9:231–238. https://doi.org/10.3920/BM2017.0133

Article  PubMed  Google Scholar 

Peirotén A, Gaya P, Álvarez I, Landete JM (2020) Production of O-desmethylangolensin, tetrahydrodaidzein, 6’-hydroxy-O-desmethylangolensin and 2-(4-hydroxyphenyl)-propionic acid in fermented soy beverage by lactic acid bacteria and Bifidobacterium strains. Food Chem 318:126521. https://doi.org/10.1016/j.foodchem.2020.126521

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif