A circular RNA, circPTPN14, increases MYC transcription by interacting with FUBP1 and exacerbates renal fibrosis

Rockey DC, Bell PD, Hill JA (2015) Fibrosis—A common pathway to organ injury and failure. N Engl J Med 372:1138–1149

Article  CAS  PubMed  Google Scholar 

Wynn TA, Ramalingam TR (2012) Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med 18:1028–1040

Article  CAS  PubMed  PubMed Central  Google Scholar 

Henderson NC, Rieder F, Wynn TA (2020) Fibrosis: from mechanisms to medicines. Nature 587:555–566

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boor P, Ostendorf T, Floege J (2010) Renal fibrosis: novel insights into mechanisms and therapeutic targets. Nat Rev Nephrol 6:643–656

Article  PubMed  Google Scholar 

Liu Y (2011) Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol 7:684–696

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chawla LS, Eggers PW, Star RA, Kimmel PL (2014) Acute kidney injury and chronic kidney disease as interconnected syndromes. N Engl J Med 371:58–66

Article  PubMed  Google Scholar 

Böttinger EP, Bitzer M (2002) TGF-ß signaling in renal disease. JASN 13:2600–2610

Article  PubMed  Google Scholar 

Varga J (1995) Modulation of collagen gene expression: its relation to fibrosis in systemic sclerosis and other disorders. Ann Intern Med 122:60

Article  CAS  PubMed  Google Scholar 

Kristensen LS et al (2019) The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet 20:675–691

Article  CAS  PubMed  Google Scholar 

Chen L-L (2020) The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol 21:475–490

Article  CAS  PubMed  Google Scholar 

Huang T et al (2020) Circular RNA YAP1 acts as the sponge of microRNA-21-5p to secure HK-2 cells from ischaemia/reperfusion-induced injury. J Cell Mol Med 24:4707–4715

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kölling M et al (2018) The Circular RNA ciRs-126 Predicts survival in critically ill patients with acute kidney injury. Kidney Int Rep 3:1144–1152

Article  PubMed  PubMed Central  Google Scholar 

Xu H-P, Ma X-Y, Yang C (2021) Circular RNA TLK1 promotes sepsis-associated acute kidney injury by regulating inflammation and oxidative stress through miR-106a-5p/HMGB1 Axis. Front Mol Biosci 8:660269

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Z et al (2022) Circular RNA circPPP6R3 upregulates CD44 to promote the progression of clear cell renal cell carcinoma via sponging miR-1238-3p. Cell Death Dis 13:22

Article  CAS  Google Scholar 

Mao W et al (2021) ciRS-7 is a prognostic biomarker and potential gene therapy target for renal cell carcinoma. Mol Cancer 20:142

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gong L-J, Wang X-Y, Yao X, Wu X, Gu W-Y (2021) CircESRP1 inhibits clear cell renal cell carcinoma progression through the CTCF-mediated positive feedback loop. Cell Death Dis 12:1081

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kölling M et al (2019) Circular RNAs in urine of kidney transplant patients with acute T Cell-mediated allograft rejection. Clin Chem 65:1287–1294

Article  PubMed  Google Scholar 

Wang J et al (2021) MicroRNA-874-3p/ADAM (a disintegrin and metalloprotease) 19 mediates macrophage activation and renal fibrosis after acute kidney injury. Hypertension 77:1613–1626

Article  CAS  PubMed  Google Scholar 

Wang P et al (2018) Long noncoding RNA lnc-TSI inhibits renal fibrogenesis by negatively regulating the TGF-β/Smad3 pathway. Sci Transl Med 10:2039

Article  Google Scholar 

Wang J et al (2022) Inhibition of METTL3 attenuates renal injury and inflammation by alleviating TAB3 m6A modifications via IGF2BP2-dependent mechanisms. Sci Transl Med 14:2709

Article  Google Scholar 

Jiang L et al (2022) METTL3-mediated m6A modification of TIMP2 mRNA promotes podocyte injury in diabetic nephropathy. Mol Ther 30:1721–1740

Article  CAS  PubMed  Google Scholar 

Thomson DW, Dinger ME (2016) Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet 17:272–283

Article  CAS  PubMed  Google Scholar 

Hansen TB et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495:384–388

Article  CAS  PubMed  Google Scholar 

Shi L et al (2021) A tumor-suppressive circular RNA mediates uncanonical integrin degradation by the proteasome in liver cancer. Sci Adv 7:5043

Article  Google Scholar 

Chen Z et al (2021) Circular RNA cia-MAF drives self-renewal and metastasis of liver tumor-initiating cells via transcription factor MAFF. J Clin Investig 131:e148020

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shen S et al (2021) circPDE4B prevents articular cartilage degeneration and promotes repair by acting as a scaffold for RIC8A and MID1. Ann Rheum Dis 80:1209–1219

Article  CAS  PubMed  Google Scholar 

Duncan R et al (1994) A sequence-specific, single-strand binding protein activates the far upstream element of c-myc and defines a new DNA-binding motif. Genes Dev 8:465–480

Article  CAS  PubMed  Google Scholar 

Liu J et al (2006) The FUSE/FBP/FIR/TFIIH system is a molecular machine programming a pulse of c-myc expression. EMBO J 25:2119–2130

Article  CAS  PubMed  PubMed Central  Google Scholar 

Edeling M, Ragi G, Huang S, Pavenstädt H, Susztak K (2016) Developmental signalling pathways in renal fibrosis: the roles of Notch Wnt and Hedgehog. Nat Rev Nephrol 12:426–439

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jeremy Wen Q et al (2015) Targeting megakaryocytic-induced fibrosis in myeloproliferative neoplasms by AURKA inhibition. Nat Med 21:1473–1480

Article  CAS  Google Scholar 

Shen Y et al (2017) c-Myc promotes renal fibrosis by inducing integrin αv-mediated transforming growth factor-β signaling. Kidney Int 92:888–899

Article  CAS  PubMed  Google Scholar 

Pelengaris S, Khan M, Evan G (2002) c-MYC: more than just a matter of life and death. Nat Rev Cancer 2:764–776

Article  CAS  PubMed  Google Scholar 

Wang H et al (2007) Improved low molecular weight Myc-Max inhibitors. Mol Cancer Ther 6:2399–2408

Article  CAS  PubMed  Google Scholar 

Duncan R, Collins I, Tomonaga T, Zhang T, Levens D (1996) A unique transactivation sequence motif is found in the carboxyl-terminal domain of the single-strand-binding protein FBP. Mol Cell Biol 16:2274–2282

Article  CAS  PubMed  PubMed Central  Google Scholar 

Braddock DT (2002) Molecular basis of sequence-specific single-stranded DNA recognition by KH domains: solution structure of a complex between hnRNP K KH3 and single-stranded DNA. EMBO J 21:3476–3485

Article  CAS  PubMed  PubMed Central  Google Scholar 

van Zonneveld AJ, Kölling M, Bijkerk R, Lorenzen JM (2021) Circular RNAs in kidney disease and cancer. Nat Rev Nephrol 17:814–826

Article  PubMed  Google Scholar 

Kristensen LS, Jakobsen T, Hager H, Kjems J (2022) The emerging roles of circRNAs in cancer and oncology. Nat Rev Clin Oncol 19:188–206

Article  CAS  PubMed  Google Scholar 

Davis AC, Wims M, Spotts GD, Hann SR, Bradley A (1993) A null c-myc mutation causes lethality before 10.5 days of gestation in homozygotes and reduced fertility in heterozygous female mice. Genes Dev 7:671–682

Article  CAS  PubMed  Google Scholar 

Zhou W et al (2016) Far Upstream element binding protein plays a crucial role in embryonic development hematopoiesis and stabilizing myc expression levels. The Am J Pathol 186(3) 701-715. https://doi.org/10.1016/j.ajpath.2015.10.028

留言 (0)

沒有登入
gif