Association between gut microbiota and preeclampsia-eclampsia: a two-sample Mendelian randomization study

Gestational hypertension and preeclampsia. ACOG practice bulletin summary, number 222. Obstet Gynecol. 2020;135:1492–5.

Article  Google Scholar 

Abalos E, Cuesta C, Grosso AL, Chou D, Say L. Global and regional estimates of preeclampsia and eclampsia: a systematic review. Eur J Obstet Gynecol Reprod Biol. 2013;170:1–7.

Article  PubMed  Google Scholar 

Say L, Chou D, Gemmill A, Tunçalp Ö, Moller A-B, Daniels J, et al. Global causes of maternal death: a WHO systematic analysis. Lancet Glob Health. 2014;2:e323–33.

Article  PubMed  Google Scholar 

Chappell LC, Cluver CA, Kingdom J, Tong S. Pre-eclampsia. Lancet. 2021;398:341–54.

Article  CAS  PubMed  Google Scholar 

Rana S, Lemoine E, Granger JP, Karumanchi SA. Preeclampsia: pathophysiology, challenges, and perspectives. Circ Res. 2019;124:1094–112.

Article  CAS  PubMed  Google Scholar 

Turbeville HR, Sasser JM. Preeclampsia beyond pregnancy: long-term consequences for mother and child. Am J Physiol Ren Physiol. 2020;318:F1315–26.

Article  CAS  Google Scholar 

Phipps EA, Thadhani R, Benzing T, Karumanchi SA. Pre-eclampsia: pathogenesis, novel diagnostics and therapies. Nat Rev Nephrol. 2019;15:275–89.

Article  PubMed  PubMed Central  Google Scholar 

Rätsep MT, Hickman AF, Maser B, Pudwell J, Smith GN, Brien D, et al. Impact of preeclampsia on cognitive function in the offspring. Behav Brain Res. 2016;302:175–81.

Article  PubMed  Google Scholar 

Staff AC, Fjeldstad HE, Fosheim IK, Moe K, Turowski G, Johnsen GM, et al. Failure of physiological transformation and spiral artery atherosis: their roles in preeclampsia. Am J Obstet Gynecol. 2022;226:S895–906.

Article  CAS  PubMed  Google Scholar 

Maynard SE, Min J-Y, Merchan J, Lim K-H, Li J, Mondal S, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest. 2003;111:649–58.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guerby P, Tasta O, Swiader A, Pont F, Bujold E, Parant O, et al. Role of oxidative stress in the dysfunction of the placental endothelial nitric oxide synthase in preeclampsia. Redox Biol. 2021;40:101861.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saito S, Shiozaki A, Nakashima A, Sakai M, Sasaki Y. The role of the immune system in preeclampsia. Mol Asp Med. 2007;28:192–209.

Article  CAS  Google Scholar 

Goltsman DSA, Sun CL, Proctor DM, DiGiulio DB, Robaczewska A, Thomas BC, et al. Metagenomic analysis with strain-level resolution reveals fine-scale variation in the human pregnancy microbiome. Genome Res. 2018;28:1467–80.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Di Simone N, Santamaria Ortiz A, Specchia M, Tersigni C, Villa P, Gasbarrini A, et al. Recent insights on the maternal microbiota: impact on pregnancy outcomes. Front Immunol. 2020;11:528202.

Article  PubMed  PubMed Central  Google Scholar 

Ahmadian E, Rahbar Saadat Y, Hosseiniyan Khatibi SM, Nariman-Saleh-Fam Z, Bastami M, Zununi Vahed F, et al. Pre-eclampsia: microbiota possibly playing a role. Pharmacol Res. 2020;155:104692.

Article  CAS  PubMed  Google Scholar 

Altemani F, Barrett HL, Gomez-Arango L, Josh P, David McIntyre H, Callaway LK, et al. Pregnant women who develop preeclampsia have lower abundance of the butyrate-producer Coprococcus in their gut microbiota. Pregnancy Hypertens. 2021;23:211–9.

Article  PubMed  Google Scholar 

Chen X, Li P, Liu M, Zheng H, He Y, Chen M-X, et al. Gut dysbiosis induces the development of pre-eclampsia through bacterial translocation. Gut. 2020;69:513–22.

Article  CAS  PubMed  Google Scholar 

Miao T, Yu Y, Sun J, Ma A, Yu J, Cui M, et al. Decrease in abundance of bacteria of the genus Bifidobacterium in gut microbiota may be related to pre-eclampsia progression in women from East China. Food Nutr Res. 2021;65:5781. https://doi.org/10.29219/fnr.v65.5781.

Article  CAS  Google Scholar 

Lv L-J, Li S-H, Li S-C, Zhong Z-C, Duan H-L, Tian C, et al. Early-onset preeclampsia is associated with gut microbial alterations in antepartum and postpartum women. Front Cell Infect Microbiol. 2019;9:224.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chang Y, Chen Y, Zhou Q, Wang C, Chen L, Di W, et al. Short-chain fatty acids accompanying changes in the gut microbiome contribute to the development of hypertension in patients with preeclampsia. Clin Sci (Lond). 2020;134:289–302.

Article  CAS  Google Scholar 

Yu J, Zhang B, Miao T, Hu H, Sun Y. Dietary nutrition and gut microbiota composition in patients with hypertensive disorders of pregnancy. Front Nutr. 2022;9:862892.

Article  PubMed  PubMed Central  Google Scholar 

Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GAD, Gasbarrini A, et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms. 2019;7:E14.

Article  PubMed  Google Scholar 

Greenland S. An introduction to instrumental variables for epidemiologists. Int J Epidemiol. 2000;29:722–9.

Article  CAS  PubMed  Google Scholar 

Burgess S, Thompson SG. Mendelian randomization: methods for causal inference using genetic variants: CRC Press; 2021.

Book  Google Scholar 

Sanna S, van Zuydam NR, Mahajan A, Kurilshikov A, Vich Vila A, Võsa U, et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat Genet. 2019;51:600–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu Q, Ni J-J, Han B-X, Yan S-S, Wei X-T, Feng G-J, et al. Causal relationship between gut microbiota and autoimmune diseases: a two-sample Mendelian randomization study. Front Immunol. 2021;12:746998.

Article  CAS  PubMed  Google Scholar 

Inamo J. Non-causal association of gut microbiome on the risk of rheumatoid arthritis: a Mendelian randomisation study. Ann Rheum Dis. 2021;80:e103.

Article  PubMed  Google Scholar 

Kurilshikov A, Medina-Gomez C, Bacigalupe R, Radjabzadeh D, Wang J, Demirkan A, et al. Large-scale association analyses identify host factors influencing human gut microbiome composition. Nat Genet. 2021;53:156.

Article  CAS  PubMed  PubMed Central  Google Scholar 

MiBioGen consortium. MiBioGen. https://mibiogen.gcc.rug.nl/. Accessed 16 Sep 2022.

Kurki MI, Karjalainen J, Palta P, Sipilä TP, Kristiansson K, Donner K, et al. FinnGen: unique genetic insights from combining isolated population and national health register data. medRxiv. 2022;2022.03.03.22271360. https://doi.org/10.1101/2022.03.03.22271360.

FinnGen. FinnGen R7 release. https://r7.finngen.fi/. Accessed 1 Oct 2022.

Burgess S, Dudbridge F, Thompson SG. Combining information on multiple instrumental variables in Mendelian randomization: comparison of allele score and summarized data methods. Stat Med. 2016;35:1880–906.

Article  PubMed  Google Scholar 

Pierce BL, Burgess S. Efficient design for Mendelian randomization studies: subsample and 2-sample instrumental variable estimators. Am J Epidemiol. 2013;178:1177–84.

Article  PubMed  PubMed Central  Google Scholar 

Bowden J, Smith GD, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44:512–25.

Article  PubMed  PubMed Central  Google Scholar 

Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol. 2017;46:1985–98.

Article  PubMed  PubMed Central  Google Scholar 

Verbanck M, Chen C-Y, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet. 2018;50:693–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xue H, Shen X, Pan W. Constrained maximum likelihood-based Mendelian randomization robust to both correlated and uncorrelated pleiotropic effects. Am J Hum Genet. 2021;108:1251–69.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Staiger D, work(s): JHSR. Instrumental variables regression with weak instruments. Econometrica. 1997;65:557–86.

Article  Google Scholar 

Burgess S. Online sample size and power calculator for Mendelian randomization with a binary outcome. https://sb452.shinyapps.io/power/. Accessed 30 Sep 2022.

Burgess S. Sample size and power calculations in Mendelian randomization with a single instrumental variable and a binary outcome. Int J Epidemiol. 2014;43:922–9.

Article  PubMed  PubMed Central  Google Scholar 

Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci U S A. 2003;100:9440–5.

Article  CAS  PubMed

留言 (0)

沒有登入
gif