InsP3R–RyR Ca2+ channel crosstalk facilitates arrhythmias in the failing human ventricle

Amoni M, Dries E, Ingelaere S, Vermoortele D, Roderick HL, Claus P, Willems R, Sipido KR (2021) Ventricular arrhythmias in ischemic cardiomyopathy-new avenues for mechanism-guided treatment. Cells 10:2629. https://doi.org/10.3390/cells10102629

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bare DJ, Kettlun CS, Liang M, Bers DM, Mignery GA (2005) Cardiac type 2 inositol 1,4,5-trisphosphate receptor: interaction and modulation by calcium/calmodulin-dependent protein kinase II. J Biol Chem 280:15912–15920. https://doi.org/10.1074/jbc.M414212200

Article  CAS  PubMed  Google Scholar 

Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415:198–205. https://doi.org/10.1038/415198a

Article  CAS  PubMed  Google Scholar 

Bers DM, Pogwizd SM, Schlotthauer K (2002) Upregulated Na/Ca exchange is involved in both contractile dysfunction and arrhythmogenesis in heart failure. Basic Res Cardiol 97(Suppl 1):I36-42. https://doi.org/10.1007/s003950200027

Article  PubMed  Google Scholar 

Betzenhauser MJ, Wagner LE 2nd, Iwai M, Michikawa T, Mikoshiba K, Yule DI (2008) ATP modulation of Ca2+ release by type-2 and type-3 inositol (1, 4, 5)-triphosphate receptors. Differing ATP sensitivities and molecular determinants of action. J Biol Chem 283:21579–21587. https://doi.org/10.1074/jbc.M801680200

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beuckelmann DJ, Nabauer M, Erdmann E (1993) Alterations of K+ currents in isolated human ventricular myocytes from patients with terminal heart failure. Circ Res 73:379–385. https://doi.org/10.1161/01.res.73.2.379

Article  CAS  PubMed  Google Scholar 

Blanch ISJ, Egger M (2018) Obstruction of ventricular Ca(2+)—dependent arrhythmogenicity by inositol 1,4,5-trisphosphate-triggered sarcoplasmic reticulum Ca(2+) release. J Physiol 596:4323–4340. https://doi.org/10.1113/JP276319

Article  CAS  Google Scholar 

Chung J, Tilūnaitė A, Ladd D, Hunt H, Soeller C, Crampin EJ, Johnson ST, Roderick HL, Rajagopal V (2022) IP3R activity increases propensity of RyR-mediated sparks by elevating dyadic [Ca2+]. Math Bio. https://doi.org/10.1016/j.mbs.2022.108923

Article  Google Scholar 

De Smet MA, Lissoni A, Nezlobinsky T, Wang N, Dries E, Perez-Hernandez M, Lin X, Amoni M, Vervliet T, Witschas K, Rothenberg E, Bultynck G, Schulz R, Panfilov AV, Delmar M, Sipido KR, Leybaert L (2021) Cx43 hemichannel microdomain signaling at the intercalated disc enhances cardiac excitability. J Clin Invest. https://doi.org/10.1172/JCI137752

Article  PubMed  PubMed Central  Google Scholar 

Demydenko K, Ekhteraei-Tousi S, Roderick HL (2022) Inositol 1,4,5-trisphosphate receptors in cardiomyocyte physiology and disease. Philos Trans R Soc Lond B Biol Sci 377:20210319. https://doi.org/10.1098/rstb.2021.0319

Article  PubMed  PubMed Central  Google Scholar 

Demydenko K, Sipido KR, Roderick HL (2021) Ca2+ release via InsP3Rs enhances RyR recruitment during Ca2+ transients by increasing dyadic [Ca2+] in cardiomyocytes. J Cell Sci. https://doi.org/10.1242/jcs.258671

Article  PubMed  Google Scholar 

Dobrev D, Wehrens XH (2014) Role of RyR2 phosphorylation in heart failure and arrhythmias: Controversies around ryanodine receptor phosphorylation in cardiac disease. Circ Res 114:1311–1319. https://doi.org/10.1161/CIRCRESAHA.114.300568 (discussion 1319)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Domeier TL, Zima AV, Maxwell JT, Huke S, Mignery GA, Blatter LA (2008) IP3 receptor-dependent Ca2+ release modulates excitation-contraction coupling in rabbit ventricular myocytes. Am J Physiol Heart Circ Physiol 294:H596-604. https://doi.org/10.1152/ajpheart.01155.2007

Article  CAS  PubMed  Google Scholar 

Drawnel FM, Archer CR, Roderick HL (2013) The role of the paracrine/autocrine mediator endothelin-1 in regulation of cardiac contractility and growth. Br J Pharmacol 168:296–317. https://doi.org/10.1111/bph.2013.168.issue-1

Article  CAS  PubMed  Google Scholar 

Dries E, Amoni M, Vandenberk B, Johnson DM, Gilbert G, Nagaraju CK, Puertas RD, Abdesselem M, Santiago DJ, Roderick HL, Claus P, Willems R, Sipido KR (2020) Altered adrenergic response in myocytes bordering a chronic myocardial infarction underlies in vivo triggered activity and repolarization instability. J Physiol. https://doi.org/10.1113/JP278839

Article  PubMed  Google Scholar 

Dries E, Bito V, Lenaerts I, Antoons G, Sipido KR, Macquaide N (2013) Selective modulation of coupled ryanodine receptors during microdomain activation of calcium/calmodulin-dependent kinase II in the dyadic cleft. Circ Res 113:1242–1252. https://doi.org/10.1161/CIRCRESAHA.113.301896

Article  CAS  PubMed  Google Scholar 

Dries E, Santiago DJ, Gilbert G, Lenaerts I, Vandenberk B, Nagaraju CK, Johnson DM, Holemans P, Roderick HL, Macquaide N, Claus P, Sipido KR (2018) Hyperactive ryanodine receptors in human heart failure and ischaemic cardiomyopathy reside outside of couplons. Cardiovasc Res 114:1512–1524. https://doi.org/10.1093/cvr/cvy088

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fischer TH, Eiringhaus J, Dybkova N, Forster A, Herting J, Kleinwachter A, Ljubojevic S, Schmitto JD, Streckfuss-Bomeke K, Renner A, Gummert J, Hasenfuss G, Maier LS, Sossalla S (2014) Ca(2+) /calmodulin-dependent protein kinase II equally induces sarcoplasmic reticulum Ca(2+) leak in human ischaemic and dilated cardiomyopathy. Eur J Heart Fail 16:1292–1300. https://doi.org/10.1002/ejhf.163

Article  CAS  PubMed  Google Scholar 

Galice S, Xie Y, Yang Y, Sato D, Bers DM (2018) Size matters: ryanodine receptor cluster size affects arrhythmogenic sarcoplasmic reticulum calcium release. J Am Heart Assoc. https://doi.org/10.1161/JAHA.118.008724

Article  PubMed  PubMed Central  Google Scholar 

Garg S, Narula J, Marelli C, Cesario D (2006) Role of angiotensin receptor blockers in the prevention and treatment of arrhythmias. Am J Cardiol 97:921–925. https://doi.org/10.1016/j.amjcard.2005.10.028

Article  CAS  PubMed  Google Scholar 

Gilbert G, Demydenko K, Dries E, Puertas RD, Jin X, Sipido K, Roderick HL (2020) calcium signaling in cardiomyocyte function. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a035428

Article  PubMed  PubMed Central  Google Scholar 

Gomez AM, Valdivia HH, Cheng H, Lederer MR, Santana LF, Cannell MB, McCune SA, Altschuld RA, Lederer WJ (1997) Defective excitation-contraction coupling in experimental cardiac hypertrophy and heart failure. Science 276:800–806. https://doi.org/10.1126/science.276.5313.800

Article  CAS  PubMed  Google Scholar 

Harzheim D, Movassagh M, Foo RS, Ritter O, Tashfeen A, Conway SJ, Bootman MD, Roderick HL (2009) Increased InsP3Rs in the junctional sarcoplasmic reticulum augment Ca2+ transients and arrhythmias associated with cardiac hypertrophy. Proc Natl Acad Sci USA 106:11406–11411. https://doi.org/10.1073/pnas.0905485106

Article  PubMed  PubMed Central  Google Scholar 

Hasenfuss G, Schillinger W, Lehnart SE, Preuss M, Pieske B, Maier LS, Prestle J, Minami K, Just H (1999) Relationship between Na+-Ca2+—exchanger protein levels and diastolic function of failing human myocardium. Circulation 99:641–648. https://doi.org/10.1161/01.cir.99.5.641

Article  CAS  PubMed  Google Scholar 

Hegyi B, Polonen RP, Hellgren KT, Ko CY, Ginsburg KS, Bossuyt J, Mercola M, Bers DM (2021) Cardiomyocyte Na(+) and Ca(2+) mishandling drives vicious cycle involving CaMKII, ROS, and ryanodine receptors. Basic Res Cardiol 116:58. https://doi.org/10.1007/s00395-021-00900-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Heinzel FR, Bito V, Volders PG, Antoons G, Mubagwa K, Sipido KR (2002) Spatial and temporal inhomogeneities during Ca2+ release from the sarcoplasmic reticulum in pig ventricular myocytes. Circ Res 91:1023–1030. https://doi.org/10.1161/01.res.0000045940.67060.dd

Article  CAS  PubMed  Google Scholar 

Hohendanner F, Walther S, Maxwell JT, Kettlewell S, Awad S, Smith GL, Lonchyna VA, Blatter LA (2015) Inositol-1,4,5-trisphosphate induced Ca2+ release and excitation-contraction coupling in atrial myocytes from normal and failing hearts. J Physiol 593:1459–1477. https://doi.org/10.1113/jphysiol.2014.283226

Article  CAS  PubMed  Google Scholar 

Horn T, Ullrich ND, Egger M (2013) “Eventless” InsP3-dependent SR-Ca2+ release affecting atrial Ca2+ sparks. J Physiol 591:2103–2111. https://doi.org/10.1113/jphysiol.2012.247288

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jayasinghe I, Crossman D, Soeller C, Cannell M (2012) Comparison of the organization of T-tubules, sarcoplasmic reticulum and ryanodine receptors in rat and human ventricular myocardium. Clin Exp Pharmacol Physiol 39:469–476. https://doi.org/10.1111/j.1440-1681.2011.05578.x

Article  CAS  PubMed  Google Scholar 

Johnson DM, Antoons G (2018) Arrhythmogenic mechanisms in heart failure: linking beta-adrenergic stimulation, stretch, and calcium. Front Physiol 9:1453. https://doi.org/10.3389/fphys.2018.01453

Article  PubMed  PubMed Central  Google Scholar 

Jung P, Seibertz F, Fakuade FE, Ignatyeva N, Sampathkumar S, Ritter M, Li H, Mason FE, Ebert A, Voigt N (2022) Increased cytosolic calcium buffering contributes to a cellular arrhythmogenic substrate in iPSC-cardiomyocytes from patients with dilated cardiomyopathy. Basic Res Cardiol 117:5. https://doi.org/10.1007/s00395-022-00912-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kockskamper J, Zima AV, Roderick HL, Pieske B, Blatter LA, Bootman MD (2008) Emerging roles of inositol 1,4,5-trisphosphate signaling in cardiac myocytes. J Mol Cell Cardiol 45:128–147. https://doi.org/10.1016/j.yjmcc.2008.05.014

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kolstad TR, van den Brink J, MacQuaide N, Lunde PK, Frisk M, Aronsen JM, Norden ES, Cataliotti A, Sjaastad I, Sejersted OM, Edwards AG, Lines GT, Louch WE (2018) Ryanodine receptor dispersion disrupts Ca(2+) release in failing cardiac myocytes. Elife. https://doi.org/10.7554/eLife.39427

留言 (0)

沒有登入
gif