Image-mode performance characterisation of a positron emission tomography subsystem designed for Biology-guided radiotherapy (BgRT)

1. Siegel RL, , Ma J, , Zou Z, , Jemal A. Cancer statistics, 2014. CA Cancer J Clin 2014; 64: 9–29. doi: https://doi.org/10.3322/caac.21208

2. Brahme A. Development of radiation therapy optimization. Acta Oncol 2000; 39: 579–95. doi: https://doi.org/10.1080/028418600750013267

3. Thondykandy BA, , Swamidas JV, , Agarwal J, , Gupta T, , Laskar SG, , Mahantshetty U, , et al.. Setup error analysis in helical tomotherapy based image-guided radiation therapy treatments. J Med Phys 2015; 40: 233–39. doi: https://doi.org/10.4103/0971-6203.170796

4. Oderinde OM, , Shirvani SM, , Olcott PD, , Kuduvalli G, , Mazin S, , Larkin D. The technical design and concept of a PET/CT linac for biology-guided radiotherapy. Clin Transl Radiat Oncol 2021; 29: 106–12. doi: https://doi.org/10.1016/j.ctro.2021.04.003

5. Cerviño LI, , Du J, , Jiang SB. Mri-Guided tumor tracking in lung cancer radiotherapy. Phys Med Biol 2011; 56: 3773–85. doi: https://doi.org/10.1088/0031-9155/56/13/003

6. Ting L-L, , Chuang H-C, , Liao A-H, , Kuo C-C, , Yu H-W, , Tsai H-C, , et al.. Tumor motion tracking based on a four-dimensional computed tomography respiratory motion model driven by an ultrasound tracking technique. Quant Imaging Med Surg 2020; 10: 26–39. doi: https://doi.org/10.21037/qims.2019.09.02

7. Rietzel E, , Chen GTY, , Choi NC, , Willet CG. Four-Dimensional image-based treatment planning: target volume segmentation and dose calculation in the presence of respiratory motion. Int J Radiat Oncol Biol Phys 2005; 61: 1535–50. doi: https://doi.org/10.1016/j.ijrobp.2004.11.037

8. Shirvani SM, , Huntzinger CJ, , Melcher T, , Olcott PD, , Voronenko Y, , Bartlett-Roberto J, , et al.. Biology-guided radiotherapy: redefining the role of radiotherapy in metastatic cancer. Br J Radiol 2021; 94(1117): 20200873. doi: https://doi.org/10.1259/bjr.20200873

9. Snyder JE, , St-Aubin J, , Yaddanapudi S, , Boczkowski A, , Dunkerley DAP, , Graves SA, , et al.. Commissioning of a 1.5T elekta unity MR-linac: a single institution experience. J Appl Clin Med Phys 2020; 21: 160–72. doi: https://doi.org/10.1002/acm2.12902

10. Klüter S. Technical design and concept of a 0.35 T MR-Linac. Clin Transl Radiat Oncol. Internet]. 2019. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2405630819300692

11. Thorwarth D, , Low DA. Technical challenges of real-time adaptive MR-guided radiotherapy. Front Oncol 2021; 11: 634507. doi: https://doi.org/10.3389/fonc.2021.634507

12. Zhu A, , Lee D, , Shim H. Metabolic positron emission tomography imaging in cancer detection and therapy response. Semin Oncol 2011; 38: 55–69. doi: https://doi.org/10.1053/j.seminoncol.2010.11.012

13. Ganem J, , Thureau S, , Gardin I, , Modzelewski R, , Hapdey S, , Vera P. Delineation of lung cancer with FDG PET/CT during radiation therapy. Radiat Oncol 2018; 13: 219. doi: https://doi.org/10.1186/s13014-018-1163-2

14. Miwa K, , Wagatsuma K, , Iimori T, , Sawada K, , Kamiya T, , Sakurai M, , et al.. Multicenter study of quantitative PET system harmonization using NIST-traceable 68ge/68ga cross-calibration kit. Physica Medica 2018; 52: 98–103. doi: https://doi.org/10.1016/j.ejmp.2018.07.001

15. Townsend D, , Byars L, , Defriset M, , Geissbuhler A, , Nutt R. Rotating positron tomographs revisited. Phys Med Biol 1994; 39: 401–10. doi: https://doi.org/10.1088/0031-9155/39/3/008

16. Townsend DW, , Beyer T, , Meltzer CC, , Dachille MA, , Derbyshire SWG, , Jones AKP, , et al.. The ECAT ART scanner for positron emission tomography. 2. research and clinical applications. Clin Positron Imaging 1999; 2: 17–30. doi: https://doi.org/10.1016/s1095-0397(98)00056-9

17. NEMA. NEMA Standards Publication NU 2-2018: Performance Measurements of Positron Emission Tomographs. Rosslyn, VA; Report No: National Electrical Manufacturers Association; 2018.

18. Narayanan M, , Zaks D, , Olcott P, , Voronenko Y, , Burns J, , Xu S, , et al.. Physical validation of biology-guided radiotherapy for delivering a tracked dose distribution to a moving PET-avid target. International Journal of Radiation Oncology*Biology*Physics 2021; 111: S22. doi: https://doi.org/10.1016/j.ijrobp.2021.07.078

19. Bailey DL, , Townsend DW, , Kinahan PE, , Grootoonk S, , Jones T. An investigation of factors affecting detector and geometric correction in normalization of 3-D PET data. IEEE Trans Nucl Sci 1996; 43: 3300–3307. doi: https://doi.org/10.1109/23.552739

20. Bai C, , Shao L, , Da Silva AJ, , Zhao Z. n.d.).( A generalized model for the conversion from CT numbers to linear attenuation coefficients. IEEE Trans Nucl Sci. Available from: https://ieeexplore.ieee.org/document/1236959/

21. Rausch I, , Ruiz A, , Valverde-Pascual I, , Cal-González J, , Beyer T, , Carrio I. Performance evaluation of the vereos PET/CT system according to the NEMA NU2-2012 standard. J Nucl Med 2019; 60: 561–67. doi: https://doi.org/10.2967/jnumed.118.215541

22. Hsu DFC, , Ilan E, , Peterson WT, , Uribe J, , Lubberink M, , Levin CS. Studies of a next-generation silicon-photomultiplier-based time-of-flight PET/CT system. J Nucl Med 2017; 58: 1511–18. doi: https://doi.org/10.2967/jnumed.117.189514

23. Schaar J, , Noordzij W, , Dierckx R, , et al.. Performance characteristics of the digital biograph vision PET/CT system. J Nucl Med [Internet] 2019. Available from: http://jnm.snmjournals.org/lookup/doi/10.2967/jnumed.118.215418

24. Kaneta T, , Ogawa M, , Motomura N, , Iizuka H, , Arisawa T, , Hino-Shishikura A, , et al.. Initial evaluation of the celesteion large-bore PET/CT scanner in accordance with the NEMA NU2-2012 standard and the japanese guideline for oncology FDG PET/CT data acquisition protocol version 2.0. EJNMMI Research 2017; 7(1): 83. doi: https://doi.org/10.1186/s13550-017-0331-y

25. Chen S, , Hu P, , Gu Y, , Yu H, , Shi H. Performance characteristics of the digital umi550 PET/CT system according to the NEMA NU2-2018 standard. EJNMMI Phys 2020; 7: 43. doi: https://doi.org/10.1186/s40658-020-00315-w

留言 (0)

沒有登入
gif