Individualized Patient Care Through Model-Informed Precision Dosing: Reflections on Training Future Practitioners

Yamada W, Bartroff J, Bayard D, Burke J, Van Guilder M, Jelliffe R, Leary R, Neely M, Kryschenko A, Schumitzky A. The nonparametric adaptive grid algorithm for population pharmacokinetic modeling. Technical Report TR-2014–1, USC Laboratory of Applied Pharmacokinetics and Bioinformatics, 2013. NPAG_submission_29Oct2013.dvi (lapk.org). Accessed 03/24/22.

Yamada WM, Neely MN, Bartroff J, Bayard DS, Burke JV, Guilder MV, Jelliffe RW, Kryshchenko A, Leary R, Tatarinova T, Schumitzky A. An algorithm for nonparametric estimation of a multivariate mixing distribution with applications to population pharmacokinetics. Pharmaceutics. 2020;13:42. https://doi.org/10.3390/pharmaceutics13010042.

Article  PubMed  PubMed Central  Google Scholar 

Bayard DS, Neely M. Experiment design for nonparametric models based on minimizing Bayes Risk: application to voriconazole1. J Pharmacokinet Pharmacodyn. 2017;44:95–111. https://doi.org/10.1007/s10928-016-9498-5.

Article  CAS  PubMed  Google Scholar 

Lindsay BG. The geometry of mixture likelihoods: a general theory. Ann Statist. 1983;11:86–94. https://doi.org/10.1214/aos/1176346245.

Article  Google Scholar 

Mallet A. A maximum likelihood estimation method for random coefficient regression models. Biometrika. 1986;73:645–56. https://doi.org/10.1093/biomet/73.3.645.

Article  Google Scholar 

Jelliffe R, Schumitzky A, Bayard D, Leary R, Botnen A, Van Guilder M, et al. Human genetic variation, population pharmacokinetic - dynamic models. Bayesian feedback control, and maximally precise individualized drug dosage regimens, CPPM. 2009;7:249–62. https://doi.org/10.2174/187569209790112382.

Article  CAS  Google Scholar 

Jelliffe R, Bayard D, Milman M, Van Guilder M, Schumitzky A. Achieving target goals most precisely using nonparametric compartmental models and “multiple model” design of dosage regimens. Ther Drug Monit. 2000;22:346–53. https://doi.org/10.1097/00007691-200006000-00018.

Article  CAS  PubMed  Google Scholar 

Jelliffe R. Goal-oriented, model-based drug regimens: setting individualized goals for each patient. Therap Drug Monit. 2000;22:325–9. https://doi.org/10.1097/00007691-200006000-00016.

Article  CAS  Google Scholar 

Jelliffe RW, Schumitzky A, Bayard D, Milman M, Van Guilder M, Wang X, Jiang F, Barbaut X, Maire P. Model-based, goal-oriented, individualised drug therapy. Linkage of population modelling, new ‘multiple model’ dosage design, Bayesian feedback and individualised target goals. Clin Pharmacokinet. 1998; 34:57–77.

Mockeliunas L, Keutzer L, Sturkenboom MGG, Bolhuis MS, Hulskotte LMG, Akkerman OW, et al. Model-informed precision dosing of linezolid in patients with drug-resistant tuberculosis. Pharmaceutics. 2022;14:753. https://doi.org/10.3390/pharmaceutics14040753.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wicha SG, Märtson AG, Nielsen EI, Koch BCP, Friberg LE, Alffenaar JW, et al. on behalf of International Society of Anti-Infective Pharmacology (ISAP), the PK/PD study group of the European Society of Clinical Microbiology, Infectious Diseases (EPASG). From therapeutic drug monitoring to model-informed precision dosing for antibiotics. Clin Pharmacol Ther. 2021; 109:928–41. https://doi.org/10.1002/cpt.2202.

Guidi M, Csajka C, Buclin T. Parametric approaches in population pharmacokinetics. J Clin Pharmacol. 2022;62:125–41. https://doi.org/10.1002/jcph.1633.

Article  CAS  PubMed  Google Scholar 

Goutelle S, Woillard JB, Neely M, Yamada W, Bourguignon L. Nonparametric methods in population pharmacokinetics. J Clin Pharmacol. 2022;62:142–57. https://doi.org/10.1002/jcph.1650.

Article  CAS  PubMed  Google Scholar 

Kluwe F, Michelet R, Mueller-Schoell A, Maier C, Klopp-Schulze L, van Dyk M, et al. Perspectives on model-informed precision dosing in the digital health era: challenges, opportunities, and recommendations. Clin Pharmacol Ther. 2021;109:29–36. https://doi.org/10.1002/cpt.2049.

Article  PubMed  Google Scholar 

Goutelle S, Woillard JB, Buclin T, Bourguignon L, Yamada W, Csajka C, et al. Parametric and nonparametric methods in population pharmacokinetics: experts’ discussion on use, strengths, and limitations. J Clin Pharmacol. 2022;62:158–70. https://doi.org/10.1002/jcph.1993.

Article  CAS  PubMed  Google Scholar 

Holford N, Ma G, Metz D. TDM is dead. Long live TCI! Br J Clin Pharmacol. 2022; 88:1406–13. https://doi.org/10.1111/bcp.14434.

Bustad A, Terziivanov D, Leary R, Port R, Schumitzky A, Jelliffe R. Parametric and nonparametric population methods: their comparative performance in analysing a clinical dataset and two Monte Carlo simulation studies. Clin Pharmacokinet. 2006;45:365–83. https://doi.org/10.2165/00003088-200645040-00003.

Article  PubMed  Google Scholar 

Neely MN, van Guilder MG, Yamada WM, Schumitzky A, Jelliffe RW. Accurate detection of outliers and subpopulations with Pmetrics, a nonparametric and parametric pharmacometric modeling and simulation package for R. Ther Drug Monit. 2012;34:467–76. https://doi.org/10.1097/FTD.0b013e31825c4ba6.

Article  PubMed  PubMed Central  Google Scholar 

Prémaud A, Weber LT, Tönshoff B, Armstrong VW, Oellerich M, Urien S, et al. Population pharmacokinetics of mycophenolic acid in pediatric renal transplant patients using parametric and nonparametric approaches. Pharmacol Res. 2011;63:216–24. https://doi.org/10.1016/j.phrs.2010.10.017.

Article  CAS  PubMed  Google Scholar 

Wang P, Xie H, Zhang Q, Tian X, Feng Y, Qin Z, et al. Population pharmacokinetics of mycophenolic acid in renal transplant patients: a comparison of the early and stable posttransplant stages. Front Pharmacol. 2022;13: 859351. https://doi.org/10.3389/fphar.2022.859351.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lawson R, Staatz CE, Fraser CJ, Ramachandran S, Teague L, Mitchell R, et al. Population pharmacokinetic model for once daily intravenous busulfan in paediatric subjects describing time-associated clearance. CPT Pharmacometrics Syst Pharmacol. 2022;11:1002–17. https://doi.org/10.1002/psp4.12809.

Heitzmann J, Thoma Y, Bricca R, Gagnieu MC, Leclerc V, Roux S, Conrad A, Ferry T, Goutelle S. Implementation and comparison of two pharmacometric tools for model-based therapeutic drug monitoring and precision dosing of daptomycin. Pharmaceutics. 2022;14(1):114. https://doi.org/10.3390/pharmaceutics14010114.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lereclus A, Korchia T, Riff C, Dayan F, Blin O, Benito S, et al. Towards precision dosing of clozapine in schizophrenia: external evaluation of population pharmacokinetic models and Bayesian forecasting. Ther Drug Monit. 2022;44:674–82. https://doi.org/10.1097/FTD.0000000000000987.

Sager JE, Yu J, Ragueneau-Majlessi I, Isoherranen N. Physiologically based pharmacokinetic (PBPK) modeling and simulation approaches: a systematic review of published models, applications, and model verification. Drug Metab Dispos. 2015;43:1823–37. https://doi.org/10.1124/dmd.115.065920.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abouir K, Samer CF, Gloor Y, Desmeules JA, Daali Y. Reviewing data integrated for PBPK model development to predict metabolic drug-drug interactions: shifting perspectives and emerging trends. Front Pharmacol. 2021;12: 708299. https://doi.org/10.3389/fphar.2021.708299.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Polasek TM, Tucker GT, Sorich MJ, Wiese MD, Mohan T, Rostami-Hodjegan A, et al. Prediction of olanzapine exposure in individual patients using physiologically based pharmacokinetic modelling and simulation. Br J Clin Pharmacol. 2018;84:462–76. https://doi.org/10.1111/bcp.13480.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karlsson MO, Sheiner LB. The importance of modeling interoccasion variability in population pharmacokinetic analyses. J Pharmacokinet Biopharm. 1993;21:735–50. https://doi.org/10.1007/BF01113502.

Article  CAS  PubMed  Google Scholar 

Abrantes JA, Jönsson S, Karlsson MO, Nielsen EI. Handling interoccasion variability in model-based dose individualization using therapeutic drug monitoring data. Br J Clin Pharmacol. 2019;85:1326–36. https://doi.org/10.1111/bcp.13901.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li XR, Bar-Shalom Y. Design of an interacting multiple model algorithm for air traffic control tracking. IEEE Trans Control Syst Technol. 1993;1:186–94. https://doi.org/10.1109/87.251886.

Article  Google Scholar 

Jan SS, Kao YC. Radar tracking with an interacting multiple model and probabilistic data association filter for civil aviation applications. Sensors (Basel). 2013;13:6636–50. https://doi.org/10.3390/s130506636.

Article  Google Scholar 

Bayard DS, Jelliffe RW. A Bayesian approach to tracking patients having changing pharmacokinetic parameters. J Pharmacokinet Pharmacodyn. 2004;31:75–107. https://doi.org/10.1023/b:jopa.0000029490.76908.0c.

Article  PubMed  Google Scholar 

Jelliffe R, Neely M, Bayard D., Chapter 7 - Pharmacokinetic methods for TDM data analysis and optimal individualization of drug dosage regimens. In: Hempel G (ed). Handbook of Analytical Separations, Elsevier Science B.V., Volume 7, 2020, p. 135–68. https://doi.org/10.1016/B978-0-444-64066-6.00007-1.

The USC BestDose clinical software is available free on request for evaluation and use at http://www.lapk.org/bestdose.php Accessed 08/28/2022.

Macdonald I, Staatz CE, Jelliffe RW, Thomson AH. Evaluation and comparison of simple multiple model, richer data multiple model, and sequential interacting multiple model (IMM) Bayesian analyses of gentamicin and vancomycin data collected from patients undergoing cardiothoracic surgery. Ther Drug Monit. 2008;30:67–74. https://doi.org/10.1097/FTD.0b013e318161a38c.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cockroft D, Gault H. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16:33–41.

Google Scholar 

Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D, for the Modification of Diet in renal Disease Study group. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Ann Intern Med. 1999; 130:461–70. https://doi.org/10.7326/0003-4819-130-6-199903160-00002.

Jelliffe R. Estimation of creatinine clearance in patients with unstable renal function, without a urine specimen. Am J Nephrol. 2002;22:320–4. https://doi.org/10.1159/000065221.

Article  PubMed  Google Scholar 

Jelliffe R. Optimizing individualized drug therapy in the ICU. In: Jelliffe R, and Neely M: Individualized drug therapy for patients: basic foundations, relevant software, and clinical applications. Academic Press, Elsevier, 2017, p. 103–114.

Chen S. Kinetic glomerular filtration rate in routine clinical practice-applications and possibilities. Adv Chronic Kidney Dis. 2018;25:105–14. https://doi.org/10.1053/j.ackd.2017.10.013.

Article  PubMed  Google Scholar 

Schön K, Koristkova B, Kacirova I, Brozmanova H, Grundmann M. Comparison of Mw\Pharm 3.30 and Mw\Pharm ++, a Windows version of pharmacokinetic software for PK/PD monitoring of vancomycin. Part 1: a-posteriori modelling. Comput Methods Programs Biomed. 2022; 214:106552. https://doi.org/10.1016/j.cmpb.2021.106552.

Tan SPF, Scotcher D, Rostami-Hodjegan A, Galetin A. Effect of chronic kidney disease on the renal secretion via organic anion transporters (OAT)1/3: implications for PBPK modelling and dose adjustment. Clin Pharmacol Ther. 2022;112:643–52. https://doi.org/10.1002/cpt.2642.

Blackmore L, Rajamanoharan S, Williams BC. Active estimation for Jump Markov linear systems. IEEE Trans Automatic Control. 2008;53:2223–36. https://doi.org/10.1109/TAC.2008.2006100.

Article  Google Scholar 

Wills KH, Behan SJ, Nance MJ, Dawson JL, Polasek TM, Hopkins AM, et al. A. Combining therapeutic drug monitoring and pharmacokinetic modelling deconvolutes physiological and environmental sources of variability in clozapine exposure. Pharmaceutics. 2021; 14:47. https://doi.org/10.3390/pharmaceutics14010047.

Gibiansky E, Gibiansky L, Carlile DJ, Jamois C, Buchheit V, Frey N. Population pharmacokinetics of obinutuzumab (GA101) in chronic lymphocytic leukemia (CLL) and non-Hodgkin’s lymphoma and exposure-response in CLL. CPT Pharmacometrics Syst Pharmacol. 2014;3: e144. https://doi.org/10.1038/psp.2014.42.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li H, Sun Y, Yu J, Liu C, Liu J, Wang Y. Semimechanistically based modeling of pembrolizumab time-varying clearance using 4 longitudinal covariates in patients with non-small cell lung cancer. J Pharm Sci. 2019;108:692–700. https://doi.org/10.1016/j.xphs.2018.10.064.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif