Coiled-coil domain containing 3 suppresses breast cancer growth by protecting p53 from proteasome-mediated degradation

Vousden KH, Prives C. Blinded by the light: the growing complexity of p53. Cell 2009;137:413–31.

CAS  PubMed  Google Scholar 

Kenzelmann Broz D, Attardi LD. In vivo analysis of p53 tumor suppressor function using genetically engineered mouse models. Carcinogenesis. 2010;31:1311–8.

CAS  PubMed  Google Scholar 

Brady CA, Attardi LD. p53 at a glance. J Cell Sci. 2010;123:2527–32.

CAS  PubMed  PubMed Central  Google Scholar 

Vousden KH, Lu X. Live or let die: the cell’s response to p53. Nat Rev Cancer. 2002;2:594–604.

CAS  PubMed  Google Scholar 

Liao JM, Cao B, Deng J, Zhou X, Strong M, Zeng S, et al. TFIIS.h, a new target of p53, regulates transcription efficiency of pro-apoptotic bax gene. Sci Rep. 2016;6:23542.

CAS  PubMed  PubMed Central  Google Scholar 

Liu YY, Tanikawa C, Ueda K, Matsuda K. INKA2, a novel p53 target that interacts with the serine/threonine kinase PAK4. Int J Oncol. 2019;54:1907–20.

CAS  PubMed  PubMed Central  Google Scholar 

Moll UM, Wolff S, Speidel D, Deppert W. Transcription-independent pro-apoptotic functions of p53. Curr Opin Cell Biol. 2005;17:631–6.

CAS  PubMed  Google Scholar 

Leu JI, Dumont P, Hafey M, Murphy ME, George DL. Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat Cell Biol. 2004;6:443–50.

CAS  PubMed  Google Scholar 

Levine AJ, Oren M. The first 30 years of p53: growing ever more complex. Nat Rev Cancer. 2009;9:749–58.

CAS  PubMed  PubMed Central  Google Scholar 

Kruse JP, Gu W. Modes of p53 regulation. Cell 2009;137:609–22.

CAS  PubMed  PubMed Central  Google Scholar 

Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature 1997;387:296–9.

CAS  PubMed  Google Scholar 

Honda R, Tanaka H, Yasuda H. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett. 1997;420:25–27.

CAS  PubMed  Google Scholar 

Joazeiro CA, Weissman AM. RING finger proteins: mediators of ubiquitin ligase activity. Cell 2000;102:549–52.

CAS  PubMed  Google Scholar 

Fang S, Jensen JP, Ludwig RL, Vousden KH, Weissman AM. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J Biol Chem. 2000;275:8945–51.

CAS  PubMed  Google Scholar 

Hu W, Feng Z, Levine AJ. The regulation of multiple p53 stress responses is mediated through MDM2. Genes Cancer. 2012;3:199–208.

CAS  PubMed  PubMed Central  Google Scholar 

Zhang Q, Zeng SX, Lu H. Targeting p53-MDM2-MDMX loop for cancer therapy. Subcell Biochem. 2014;85:281–319.

PubMed  PubMed Central  Google Scholar 

Pomerantz J, Schreiber-Agus N, Liegeois NJ, Silverman A, Alland L, Chin L, et al. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2’s inhibition of p53. Cell 1998;92:713–23.

CAS  PubMed  Google Scholar 

Zhou X, Liao JM, Liao WJ, Lu H. Scission of the p53-MDM2 loop by ribosomal proteins. Genes Cancer. 2012;3:298–310.

PubMed  PubMed Central  Google Scholar 

Zhou X, Hao Q, Liao P, Luo S, Zhang M, Hu G et al. Nerve growth factor receptor negates the tumor suppressor p53 as a feedback regulator. Elife. 2016;5:e15099.

Chao T, Zhou X, Cao B, Liao P, Liu H, Chen Y, et al. Pleckstrin homology domain-containing protein PHLDB3 supports cancer growth via a negative feedback loop involving p53. Nat Commun. 2016;7:13755.

CAS  PubMed  PubMed Central  Google Scholar 

Goldberg AL. Protein degradation and protection against misfolded or damaged proteins. Nature 2003;426:895–9.

CAS  PubMed  Google Scholar 

Zwickl P, Ng D, Woo KM, Klenk HP, Goldberg AL. An archaebacterial ATPase, homologous to ATPases in the eukaryotic 26 S proteasome, activates protein breakdown by 20 S proteasomes. J Biol Chem. 1999;274:26008–14.

CAS  PubMed  Google Scholar 

Sdek P, Ying H, Chang DL, Qiu W, Zheng H, Touitou R, et al. MDM2 promotes proteasome-dependent ubiquitin-independent degradation of retinoblastoma protein. Mol Cell. 2005;20:699–708.

CAS  PubMed  Google Scholar 

Orlowski M, Wilk S. Ubiquitin-independent proteolytic functions of the proteasome. Arch Biochem Biophys. 2003;415:1–5.

CAS  PubMed  Google Scholar 

Kulikov R, Letienne J, Kaur M, Grossman SR, Arts J, Blattner C. Mdm2 facilitates the association of p53 with the proteasome. Proc Natl Acad Sci USA. 2010;107:10038–43.

CAS  PubMed  PubMed Central  Google Scholar 

Kobayashi S, Fukuhara A, Taguchi T, Matsuda M, Tochino Y, Otsuki M, et al. Identification of a new secretory factor, CCDC3/Favine, in adipocytes and endothelial cells. Biochem Biophys Res Commun. 2010;392:29–35.

CAS  PubMed  Google Scholar 

Kobayashi S, Fukuhara A, Otsuki M, Suganami T, Ogawa Y, Morii E, et al. Fat/vessel-derived secretory protein (Favine)/CCDC3 is involved in lipid accumulation. J Biol Chem. 2015;290:7443–51.

CAS  PubMed  PubMed Central  Google Scholar 

Liao W, Liu H, Zhang Y, Jung JH, Chen J, Su X, et al. Ccdc3: a new P63 target involved in regulation of liver lipid metabolism. Sci Rep. 2017;7:9020.

PubMed  PubMed Central  Google Scholar 

Azad AK, Chakrabarti S, Xu Z, Davidge ST, Fu Y. Coiled-coil domain containing 3 (CCDC3) represses tumor necrosis factor-alpha/nuclear factor kappaB-induced endothelial inflammation. Cell Signal. 2014;26:2793–2800.

CAS  PubMed  Google Scholar 

Ju J, Schmitz JC, Song B, Kudo K, Chu E. Regulation of p53 expression in response to 5-fluorouracil in human cancer RKO cells. Clin Cancer Res. 2007;13:4245–51.

CAS  PubMed  Google Scholar 

Mukhopadhyay D, Riezman H. Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 2007;315:201–5.

CAS  PubMed  Google Scholar 

Murata T, Shimotohno K. Ubiquitination and proteasome-dependent degradation of human eukaryotic translation initiation factor 4E. J Biol Chem. 2006;281:20788–20800.

CAS  PubMed  Google Scholar 

Thrower JS, Hoffman L, Rechsteiner M, Pickart CM. Recognition of the polyubiquitin proteolytic signal. EMBO J. 2000;19:94–102.

CAS  PubMed  PubMed Central  Google Scholar 

Zhang Y, Zhang Q, Zeng SX, Hao Q, Lu H. Inauhzin sensitizes p53-dependent cytotoxicity and tumor suppression of chemotherapeutic agents. Neoplasia. 2013;15:523–34.

PubMed  PubMed Central  Google Scholar 

Choong ML, Yang H, Lee MA, Lane DP. Specific activation of the p53 pathway by low dose actinomycin D: a new route to p53 based cyclotherapy. Cell Cycle. 2009;8:2810–8.

CAS  PubMed  Google Scholar 

Zhang Q, Zeng SX, Zhang Y, Zhang Y, Ding D, Ye Q, et al. A small molecule Inauhzin inhibits SIRT1 activity and suppresses tumour growth through activation of p53. EMBO Mol Med. 2012;4:298–312.

CAS  PubMed  PubMed Central  Google Scholar 

Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 2004;303:844–8.

CAS  PubMed  Google Scholar 

Zhang Y, Lu H. Signaling to p53: ribosomal proteins find their way. Cancer Cell. 2009;16:369–77.

CAS  PubMed  PubMed Central  Google Scholar 

Sparks A, Dayal S, Das J, Robertson P, Menendez S, Saville MK. The degradation of p53 and its major E3 ligase Mdm2 is differentially dependent on the proteasomal ubiquitin receptor S5a. Oncogene. 2014;33:4685–96.

CAS  PubMed  Google Scholar 

Yuan J, Luo K, Zhang L, Cheville JC, Lou Z. USP10 regulates p53 localization and stability by deubiquitinating p53. Cell 2010;140:384–96.

CAS  PubMed  PubMed Central  Google Scholar 

Ahn J, Prives C. The C-terminus of p53: the more you learn the less you know. Nat Struct Biol. 2001;8:730–2.

CAS  PubMed  Google Scholar 

Li M, Brooks CL, Wu-Baer F, Chen D, Baer R, Gu W. Mono- versus polyubiquitination: differential control of p53 fate by Mdm2. Science. 2003;302:1972–5.

CAS  PubMed  Google Scholar 

Liao JM, Lu H. ChIP for identification of p53 responsive DNA promoters. Methods Mol Biol. 2013;962:201–10.

CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif