The oldest unvaccinated Covid-19 survivors in South America

WHO Coronavirus (COVID–19) Dashboard. [cited 2022 Jul 11]. Available from: https://covid19.who.int.

Chai S, Li Y, Li X, Tan J, Abdelrahim MEA, Xu X. Effect of age of COVID–19 inpatient on the severity of the disease: A meta-analysis. Int J Clin Pract. 2021;75(10):e14640.

CAS  PubMed  Google Scholar 

Hägg S, Jylhävä J, Wang Y, Xu H, Metzner C, Annetorp M. etal. Age, Frailty, and Comorbidity as Prognostic Factors for Short-Term Outcomes in Patients With Coronavirus Disease 2019 in Geriatric Care. J Am Med Dir Assoc. 2020;21(11):1555–9.e2.

PubMed  PubMed Central  Google Scholar 

Thakur B, Dubey P, Benitez J, Torres JP, Reddy S, Shokar N. etal. A systematic review and meta-analysis of geographic differences in comorbidities and associated severity and mortality among individuals with COVID–19. Sci Rep. 2021;20(1):8562.

Google Scholar 

Conheça a faixa etáriadosmortospor covid– 19 no Brasileemma is 4 países.[cited 2022 Jul 26]. Available from: https://www.poder360.com.br/coronavirus/conheca-a-faixa-etaria-dos-mortos-por-covid?19-no-brasil-e-em-mais?4-paises?4/.

Centers for Disease Control. Older Adults Risks and Vaccine Information | cdc. 2021[cited 2021 Oct 23]. Available from: https://www.cdc.gov/aging/covid19/covid19-older-adults.html.

CDC. Cases, Data, and Surveillance. Centers for Disease Control and Prevention. 2020[cited 2021 Nov 18]. Available from: https://www.cdc.gov/coronavirus/2019-ncov/covid-data/investigations-discovery/hospitalization-death-by-age.html.

López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217.

Fuentes E, Fuentes M, Alarcón M, Palomo I. Immune System Dysfunction in the Elderly. An Acad Bras Ciênc. 2017;89:285–99.

CAS  PubMed  Google Scholar 

Amore S, Puppo E, Melara J, Terracciano E, Gentili S, Liotta G. Impact of COVID–19 on older adults and role of long-term care facilities during early stages of epidemic in Italy. Sci Rep. 2021;15(1):12530.

Google Scholar 

Aiello A, Farzaneh F, Candore G, Caruso C, Davinelli S, Gambino CM,etal.Immunosenescence and Its Hallmarks: How to Oppose Aging Strategically? A Review of Potential Options for Therapeutic Intervention. Front Immunol. 2019 [cited 2022 Jul 26];10. Available from: https://www.frontiersin.org/articles/10.3389/fimmu.2019.02247https://doi.org/10.3389/fimmu.2019.02247.

Lian J, Yue Y, Yu W, Zhang Y. Immunosenescence: a key player in cancer development. J Hematol OncolJ Hematol Oncol. 2020;13(1):151.

Google Scholar 

Ongrádi J, Kövesdi V. Factors that may impact on immunosenescence: an appraisal. Immun Ageing A. 2010;7:7.

Haynes L. Aging of the Immune System: Research Challenges to Enhance the Health Span of Older Adults. Front Aging. 2020 [cited 2022 Jul 26];1.Available from: https://www.frontiersin.org/articles/https://doi.org/10.3389/fragi.2020.602108.

Cunha LL, Perazzio SF, Azzi J, Cravedi P, Riella LV. Remodeling of the Immune Response With Aging: Immunosenescence and Its Potential Impact on COVID–19 Immune Response. Front Immunol. 2020;7:11:1748.

Google Scholar 

Dugué PA, Hodge AM, Ulvik A, Ueland PM, Midttun Ø, Rinaldi S, etal. Association of Markers of Inflammation,the Kynurenine Pathway and B Vitamins with Age and Mortality, and a Signature of Inflammaging. J Gerontol A Biol Sci Med Sci. 2022;77(4):826–36.

Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. Inflammaging: a new immune–metabolic viewpoint for age-related diseases. Nat Rev Endocrinol. 2018;14(10):576–90.

CAS  PubMed  Google Scholar 

Fajgenbaum DC, June CH. Cytokine Storm. N Engl J Med. 2020;3(23):2255–73.

Google Scholar 

Cron RQ.COVID–19 cytokine storm: targeting the appropriate cytokine. Lancet Rheumatol. 2021;3(4):e236–7.

Peron JPS, Nakaya H. Susceptibility of the Elderly to SARS-CoV–2 Infection: ACE–2 Overexpression, Shedding, and Antibody-dependent Enhancement(ADE). Clinics 2020 [cited 2022 Jul 26];75. Available from: http://www.scielo.br/j/clin/a/QDXYJBQk6YyLpfGNgBKtxHQ/?lang=en.

Yuki K, Fujiogi M, Koutsogiannaki S. COVID–19 pathophysiology: A review. Clin Immunol Orlando Fla. 2020;215:108427.

CAS  Google Scholar 

Parasher A. COVID–19: Current understanding of its Pathophysiology, Clinical presentation and Treatment. Postgrad Med J. 2021;97(1147):312–20.

PubMed  Google Scholar 

Bastard P, Rosen LB, Zhang Q, Michailidis E, Hoffmann HH, Zhang Y, etal. Auto antibodies against type IIFNs in patients with life-threatening COVID–19. Science. 2020;370(6515):eabd4585.

Bastard P, Gervais A, Le Voyer T, Rosain J, Philippot Q, Manry J, etal. Auto antibodies neutralizing type IIFNs are present in~ 4%of uninfected individuals over 70 years old and account for~ 20% of COVID– 19 deaths. SciImmunol. 2021;6(62): eabl4340.

Kordowitzki P.Centenarians and COVID–19: Is There a Link between Longevity and Better Immune Defense? Gerontology. 2021;1–2.

Guerini FR, Cesari M, Arosio B. Hypothetical COVID–19 protection mechanism: hints from centenarians. Immun Ageing. 2021;30(1):15

Google Scholar 

Foley MK, Searle SD, Toloue A, Booth R, Falkenham A, Falzarano D. etal.Centenarians and extremely old people living with frailty can elicit durable SARS-CoV–2 spike specific IgG antibodies with virus neutralization functions following virus infection as determined by serological study. EClinicalMedicine. 2021;37:100975.

PubMed  PubMed Central  Google Scholar 

Kong Y, Cai C, Ling L, Zeng L, Wu M, Wu Y. etal. Successful treatment of a centenarian with coronavirus disease 2019 (COVID–19) using convalescent plasma. Transfus Apher Sci. 2020;59(5):102820.

PubMed  PubMed Central  Google Scholar 

Toppi E, De Molfetta V, Zarletti G, Tiberi M, Bossù P, Scapigliati G. The Anti-SARS-CoV–2 Antibody Response in a Centenarian Woman: A Case of Long-Term Memory? Viruses. 2021;13(9):1704.

Siopis G. Supercentenarians that Survived COVID–19. Aging Dis. 2021;12(7):1539–40.

Huang Y, Paxton WA, Wolinsky SM, Neumann AU, Zhang L, He T. etal. The role of a mutant CCR5 allele in HIV–1 transmission and disease progression. Nat Med. 1996;2(11):1240–3.

CAS  PubMed  Google Scholar 

Kiepiela P, Leslie AJ, Honeyborne I, Ramduth D, Thobakgale C, Chetty S,etal.Dominant influence of HLA-B in mediating the potential co-evolution of HIV and HLA. Nature. 2004;432(7018):769–75.

Fellay J, Shianna KV, Ge D, Colombo S, Ledergerber B, Weale M. etal. A whole-genome association study of major determinants for host control of HIV–1. Science. 2007;317(5840):944–7.

Google Scholar 

Andreakos E, Abel L, Vinh DC, Kaja E, Drolet BA, Zhang Q. etal. A global effort to dissect the human genetic basis of resistance to SARS-CoV–2 infection. Nat Immunol. 2022;23(2):159–64.

CAS  PubMed  Google Scholar 

Investigational COVID–19 Convalescent Plasma; GuidanceforIndustry; Availability. Federal Register. 2020[cited2022Jul26]. Available from: https://www.federalregister.gov/documents/2020/09/21/2020–20800/investigational-covid–19-convalescent-plasma-guidance-for-industry-availability.

Naslavsky MS, Scliar MO, Yamamoto GL, Wang JYT, Zverinova S, Karp T,etal.Whole-genome sequencing of 1,171 elderly admixed individuals from São Paulo, Brazil. Nat Commun. 2022;13(1):1004.

Naslavsky MS, Yamamoto GL, de Almeida TF, Ezquina SAM, Sunaga DY, Pho N. etal. Exomic variants of an elderly cohort of Brazilians in the ABraOM database. Hum Mutat. 2017;38(7):751–63.

CAS  PubMed  Google Scholar 

Souza AM de, Resende SS, Sousa TN de, Brito CFA de. Asystematic scoping review of the genetic ancestry of the Brazilian population. Genet Mol Biol. 2019;42:495–508.

Zhang Q, Bastard P, Liu Z, Le Pen J, Moncada-Velez M, Chen J,etal. In bornerrors of type IIFN immunity in patients with life-threatening COVID–19. Science. 2020;370(6515):eabd4570.

Zhang Q, Bastard P, Cobat A, Casanova JL. Human genetic and immunological determinants of critical COVID–19 pneumonia. Nature. 2022;603(7902):587–98.

CAS  PubMed  PubMed Central  Google Scholar 

Marchi S, Viviani S, Remarque EJ, Ruello A, Bombardieri E, Bollati V. etal. Characterization of antibody response in asymptomatic and symptomatic SARS-CoV–2 infection. PLoS ONE. 2021;16(7):e0253977.

CAS  PubMed  PubMed Central  Google Scholar 

Maciola AK, La Raja M, Pacenti M, Salata C, De Silvestro G, Rosato A. etal. Neutralizing Antibody Responses to SARS-CoV–2 in Recovered COVID–19 Patients Are Variable and Correlate With Disease Severity and Receptor-Binding Domain Recognition. Front Immunol. 2022;13:830710.

CAS  PubMed  PubMed Central  Google Scholar 

Dugas M, Grote-Westrick T, Merle U, Fontenay M, Kremer AE, Hanses F. etal.Lack of antibodies against seasonal coronavirus OC43 nucleocapsid protein identifies patients at risk of critical COVID–19. J Clin Virol Off Publ Pan Am Soc Clin Virol. 2021;139:104847.

CAS  Google Scholar 

Lin CY, Wolf J, Brice DC, Sun Y, Locke M, Cherry S, etal. Pre-existing humoral immunity to human common cold coronaviruses negatively impacts the protective SARS-CoV–2 antibody response. Cell Host Microbe. 2022;30(1):83–96.e4.

Abela IA, Pasin C, Schwarzmüller M, Epp S, Sickmann ME, Schanz MM, etal. Multifactorial seroprofiling dissects the contribution of pre-existing human coronaviruses responses to SARS-CoV–2 immunity. Nat Commun. 2021;12(1):6703.

Zhang A, Stacey HD, Mullarkey CE, Miller MS. Original Antigenic Sin: How First Exposure Shapes Life long Anti-Influenza Virus Immune Responses. J Immunol Baltim Md 1950. 2019;202(2):335–40.

Debisarun PA, Gössling KL, Bulut O, Kilic G, Zoodsma M, Liu Z. etal.Induction of trained immunity by influenza vaccination - impact on COVID–19. PLOS Pathog. 2021;17(10):e1009928.

Google Scholar 

Poulain M, Chambre D, Pes GM. Centenarians exposed to the Spanish flu in their early life better survived to COVID–19. Aging. 2021;13(18):21855–65.

Yu X, Tsibane T, McGraw PA, House FS, Keefer CJ, Hicar MD, etal. Neutralizing antibodies derived from the B cells of 1918 influenza pandemic survivors. Nature. 2008;455(7212):532–6.

Junior S, Santos Ados. Corpos hígidos: o limpo e o sujo na Paraíba(1912–1924). Universidade Federal da Paraí­ba; 2011[cited 2022 Jul 26]. Available from: https://repositorio.ufpb.br.

Gripe Espanhola em MOC fechou. lojas efábricas e transformou escola em hospital, revela pesquisador da Unimontes. Universidade Estadual de Montes Claros-Unimontes. 2020 [cited 2022 Jul 26]. Available from: https://unimontes.br/gripe-espanhola-em-moc-fechou-lojas-e-fabricas-e-transformou-escola-em-hospital-revela-pesquisador-da-unimontes/.

Rijkers GT, van Overveld FJ.The “original antigenic sin” and its relevance for SARS-CoV–2 (COVID–19) vaccination. Clin Immunol Commun. 2021;1:13–6.

Hashimoto K, Kouno T, Ikawa T, Hayatsu N, Miyajima Y, Yabukami H,etal. Single-cell transcriptomics reveals expansion of cytotoxic CD4 T cells in supercentenarians. Proc Natl Acad Sci. 2019;116(48):24242–51.

Santos AF, Póvoa P, Paixão P, Mendonça A, Taborda-Barata L. Changes in Glycolytic Pathway in SARS-COV 2 Infection and Their Importance in Understanding the Severity of COVID–19. Front Chem. 2021;10:9:685196.

Google Scholar 

Codo AC, Davanzo GG, MonteiroLdeB,deSouzaGF, Muraro SP, Virgilio-da-Silva JV,etal. Elevated Glucose Levels Favor SARS-CoV–2 Infection and Monocyte Response through a HIF–1α/Glycolysis-Dependent Axis. Cell Metab. 2020;32(3):437–446.e5.

Alomar FA, Alshakhs MN, Abohelaika S, Almarzouk HM, Almualim M, Al-Ali AK. etal. Elevated plasma level of the glycolysis byproduct methylglyoxal on admission is an independent biomarker of mortality in ICU COVID–19 patients. Sci Rep. 2022;9(1):9510.

Google Scholar 

Medini H, Zirman A, Mishmar D. Immune system cells from COVID–19 patients display compromised mitochondrial-nuclear expression co-regulation and rewiring toward glycolysis. iScience. 2021;17(12):103471.

Google Scholar 

Krishnan S, Nordqvist H, Ambikan AT, Gupta S, Sperk M, Svensson-Akusjärvi S. etal. Metabolic Perturbation Associated With COVID–19 Disease Severity and SARS-CoV–2 Replication. Mol Cell Proteomics MCP. 2021;20:100159.

CAS  PubMed  Google Scholar 

Sanchez EL, Lagunoff M. Viral activation of cellular metabolism. Virology. 2015;1:479–480:609–18.

Google Scholar 

Kishimoto N, Yamamoto K, Abe T, Yasuoka N, Takamune N, Misumi S. Glucose-dependent aerobic glycolysis contributes to recruiting viral components into HIV–1 particles to maintain infectivity. Biochem Biophys Res Commun. 2021;549:187–93.

Ren L, Zhang W, Zhang J, Zhang J, Zhang H, Zhu Y. etal. Influenza A Virus (H1N1) Infection Induces Glycolysis to Facilitate Viral Replication. Virol Sin. 2021;36(6):1532–42.

CAS  PubMed  PubMed Central  Google Scholar 

Yu Q, Wang Y, Dong L, He Y, Liu R, Yang Q,etal. Regulations of Glycolytic Activities on Macrophages Functions in Tumor and Infectious Inflammation. Front Cell Infect Microbiol. 2020 [cited 2022 Aug 18];10. Available from: https://www.frontiersin.org/articles/10.3389/fcimb.2020.00287

Calder PC. Eicosanoids. Essays Biochem. 2020;64(3):423–41.

Kothapalli KSD, Park HG, Brenna JT. Polyunsaturated fatty acid biosynthesis pathway and genetics. implications for interindividual variability in prothrombotic, inflammatory conditions such as COVID–19☆,☆☆,★,★★. Prostaglandins Leukot Essent Fatty Acids. 2020;162:102183.

CAS  PubMed  PubMed Central  Google Scholar 

Adili R, Hawley M, Holinstat M. Regulation of platelet function and thrombosis by omega–3 and omega–6 polyunsaturated fatty acids. Prostaglandins Other Lipid Mediat. 2018;139:10–8.

CAS  PubMed  PubMed Central  Google Scholar 

Asher A, Tintle NL, Myers M, Lockshon L, Bacareza H, Harris WS. Blood omega–3 fatty acids and death from COVID–19: A pilot study. Prostaglandins Leukot Essent Fatty Acids. 2021;166:102250.

CAS  PubMed  PubMed Central  Google Scholar 

Baral PK, Amin MT, Rashid MMO, Hossain MS. Assessment of Polyunsaturated Fatty Acids on COVID–19-Associated Risk Reduction. Rev Bras Farmacogn Orgao Of Soc Bras Farmacogn. 2022;32(1):50–64.

CAS  Google Scholar 

White CF, Pellis L, Keeling MJ, Penman BS. Detecting HLA-infectious disease associations for multi-strain pathogens. Infect Genet Evol. 2020;83:104344.

Google Scholar 

Sanchez-Mazas A. A review of HLA allele and SNP associations with highly prevalent infectious diseases in human populations. Swiss Med Wkly. 2020;150:w20214.

Google Scholar 

Blackwell JM, Jamieson SE, Burgner D. HLA and infectious diseases. Clin Microbiol Rev. 2009;22(2):370–85.,Table of Contents.

CAS  PubMed  PubMed Central  Google Scholar 

Naumova E, Mihaylova A, Ivanova M, Mihailova S. Impact of KIR/HLA ligand combinations on immune responses in malignant melanoma. Cancer Immunol Immunother CII. 2007;56(1):95–100.

CAS  PubMed  Google Scholar 

Aguiar VRC, Augusto DG, Castelli EC, Hollenbach JA, Meyer D, Nunes K,etal. An immunogenetic view of COVID–19. Genet Mol Biol. 2021[cited2022Jul26];44. Available from: http://www.scielo.br/j/gmb/a/KJzT4HNJmhnLHjTTMBY8QqK/?lang=en.

留言 (0)

沒有登入
gif