CFTR modulates aquaporin-mediated glycerol permeability in mouse Sertoli cells

Csanady L, Vergani P, Gadsby DC (2019) Structure, gating, and regulation of the Cftr anion channel. Physiological Rev. https://doi.org/10.1152/physrev.00007.2018

Article  Google Scholar 

de Souza DAS, Faucz FR, Pereira-Ferrari L, Sotomaior VS, Raskin S (2018) Congenital bilateral absence of the vas deferens as an atypical form of cystic fibrosis: reproductive implications and genetic counseling. Andrology 6(1):127–135. https://doi.org/10.1111/andr.12450

Article  PubMed  CAS  Google Scholar 

Alves MG, Sá R, Jesus TT, Sousa M, Oliveira PF (2015) CFTR regulation of aquaporin-mediated water transport: a target in male fertility. Curr Drug Targets. https://doi.org/10.2174/1573399811666150615144108

Article  PubMed  Google Scholar 

Bernardino RL, Carrageta DF, Sousa M, Alves MG, Oliveira PF (2019) pH and male fertility: making sense on pH homeodynamics throughout the male reproductive tract. Cell Mol Life Sci. https://doi.org/10.1007/s00018-019-03170-w

Article  PubMed  Google Scholar 

Morrison CB, Shaffer KM, Araba KC, Markovetz MR, Wykoff JA, Quinney NL et al (2022) Treatment of cystic fibrosis airway cells with CFTR modulators reverses aberrant mucus properties via hydration. Eur Respir J 59:2. https://doi.org/10.1183/13993003.00185-2021

Article  CAS  Google Scholar 

Hasegawa H, Skach W, Baker O, Calayag MC, Lingappa V, Verkman AS (1992) A multifunctional aqueous channel formed by CFTR. Science. https://doi.org/10.1126/science.1279809

Article  PubMed  Google Scholar 

Bernardino RL, Marinelli RA, Maggio A, Gena P, Cataldo I, Alves MG et al (2016) Hepatocyte and Sertoli cell aquaporins, recent advances and research trends. Int J Mol Sci 17(7):1096. https://doi.org/10.3390/ijms17071096

Article  PubMed Central  CAS  Google Scholar 

Yeste M, Morato R, Rodriguez-Gil JE, Bonet S, Prieto-Martinez N (2017) Aquaporins in the male reproductive tract and sperm: functional implications and cryobiology. Reproduction Domest Animals 52(Suppl 4):12–27. https://doi.org/10.1111/rda.13082

Article  CAS  Google Scholar 

Crisóstomo L, Alves MG, Calamita G, Sousa M, Oliveira PF (2017) Glycerol and testicular activity: the good, the bad and the ugly. MHR: Basic Sci Reproductive Med. https://doi.org/10.1093/molehr/gax049

Article  Google Scholar 

Wiebe JP, Barr KJ, Buckingham KD (1989) Sustained azoospermia in squirrel monkey, Saimiri sciureus, resulting from a single intratesticular glycerol injection. Contraception 39(4):447–457. https://doi.org/10.1016/0010-7824(89)90122-4

Article  PubMed  CAS  Google Scholar 

Jesus TT, Bernardino RL, Martins AD, Sa R, Sousa M, Alves MG et al (2014) Aquaporin-9 is expressed in rat Sertoli cells and interacts with the cystic fibrosis transmembrane conductance regulator. IUBMB Life. https://doi.org/10.1002/iub.1312

Article  PubMed  Google Scholar 

Jesus TT, Bernardino RL, Martins AD, Sa R, Sousa M, Alves MG et al (2014) Aquaporin-4 as a molecular partner of cystic fibrosis transmembrane conductance regulator in rat Sertoli cells. Biochem Biophys Res Commun 446(4):1017–21. https://doi.org/10.1016/j.bbrc.2014.03.046

Article  PubMed  CAS  Google Scholar 

Crisóstomo, L. Alves MG, Gorga A, Sousa M, Riera MF, Galardo MN et al (2018) Molecular mechanisms and signaling pathways involved in the nutritional support of spermatogenesis by Sertoli Cells. In: Alves, M., Oliveira, P. (eds) Sertoli Cells. Methods in Molecular Biology, vol 1748. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7698-0_11

Pastor-Soler NM, Fisher JS, Sharpe R, Hill E, Van Hoek A, Brown D et al (2010) Aquaporin 9 expression in the developing rat epididymis is modulated by steroid hormones. Reproduction 139(3):613–621. https://doi.org/10.1530/Rep-09-0284

Article  PubMed  CAS  Google Scholar 

Yeung CH, Callies C, Tuttelmann F, Kliesch S, Cooper TG (2010) Aquaporins in the human testis and spermatozoa-identification, involvement in sperm volume regulation and clinical relevance. Int J Androl 33(4):629–41. https://doi.org/10.1111/j.1365-2605.2009.00998.x

Article  PubMed  CAS  Google Scholar 

da Silva IV, Garra S, Calamita G, Soveral G (2022) The Multifaceted role of aquaporin-9 in health and its potential as a clinical biomarker. Biomolecules 12(7):897. https://doi.org/10.3390/biom12070897

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bernardino RL, Carrageta DF, Silva AM, Calamita G, Alves MG, Soveral G et al (2018) Estrogen modulates glycerol permeability in Sertoli cells through downregulation of aquaporin-9. Cells-Basel 7(10):153. https://doi.org/10.3390/cells7100153

Article  CAS  Google Scholar 

Cheung KH, Leung CT, Leung GP, Wong PY (2003) Synergistic effects of cystic fibrosis transmembrane conductance regulator and aquaporin-9 in the rat epididymis. Biol Reprod 68(5):1505–10. https://doi.org/10.1095/biolreprod.102.010017

Article  PubMed  CAS  Google Scholar 

Morinaga T, Nakakoshi M, Hirao A, Imai M, Ishibashi K (2002) Mouse aquaporin 10 gene (AQP10) is a pseudogene. Biochem Biophys Res Commun 294(3):630–4. https://doi.org/10.1016/S0006-291X(02)00536-3

Article  PubMed  CAS  Google Scholar 

Bernardino RL, Alves M, Silva J, Barros A, Ferraz L, Sousa M et al (2016) Expression of estrogen receptors alpha (ER-α), beta (ER-β), and G protein-coupled receptor 30 (GPR30) in testicular tissue of men with Klinefelter syndrome. Hormone Metabolic Res 48(06):413–5. https://doi.org/10.1055/s-0042-105151

Article  CAS  Google Scholar 

Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. https://doi.org/10.1093/nar/29.9.e45

Article  PubMed  PubMed Central  Google Scholar 

Bernardino RL, Costa AR, Martins AD, Silva J, Barros A, Sousa M et al (2016) Estradiol modulates Na+-dependent HCO3− transporters altering intracellular pH and ion transport in human Sertoli cells: a role on male fertility? Biol Cell 108(7):179–88. https://doi.org/10.1111/boc.201500094

Article  PubMed  CAS  Google Scholar 

Rodríguez A, Gena P, Méndez-Giménez L, Rosito A, Valentí V, Rotellar F et al (2014) Reduced hepatic aquaporin-9 and glycerol permeability are related to insulin resistance in non-alcoholic fatty liver disease. Int J Obes 38(9):1213. https://doi.org/10.1038/ijo.2013.234

Article  CAS  Google Scholar 

Calamita G, Gena P, Ferri D, Rosito A, Rojek A, Nielsen S et al (2012) Biophysical assessment of aquaporin-9 as principal facilitative pathway in mouse liver import of glucogenetic glycerol. Biol Cell 104(6):342–51. https://doi.org/10.1111/boc.201100061

Article  PubMed  CAS  Google Scholar 

Badaut J, Hirt L, Granziera C, Bogousslavsky J, Magistretti PJ, Regli L (2001) Astrocyte-specific expression of aquaporin-9 in mouse brain is increased after transient focal cerebral ischemia. J Cerebral Blood Flow Metabolism 21(5):477–82. https://doi.org/10.1097/00004647-200105000-00001

Article  CAS  Google Scholar 

Deignan JL, Astbury C, Cutting GR, Del Gaudio D, Gregg AR, Grody WW et al (2020) CFTR variant testing: a technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med 22(8):1288–95. https://doi.org/10.1038/s41436-020-0822-5

Article  PubMed  PubMed Central  Google Scholar 

de Oliveira MR (2016) Phloretin-induced cytoprotective effects on mammalian cells: a mechanistic view and future directions. BioFactors 42(1):13–40. https://doi.org/10.1002/biof.1256

Article  PubMed  CAS  Google Scholar 

Lim SH, Legere E-A, Snider J, Stagljar I (2018) Recent progress in CFTR interactome mapping and its importance for cystic fibrosis. Front Pharmacol. https://doi.org/10.3389/fphar.2017.00997

Article  PubMed  PubMed Central  Google Scholar 

Gentzsch M, Dang H, Dang Y, Garcia-Caballero A, Suchindran H, Boucher RC et al (2010) The cystic fibrosis transmembrane conductance regulator impedes proteolytic stimulation of the epithelial Na+ channel. J Biol Chem. https://doi.org/10.1074/jbc.M110.155259

Article  PubMed  PubMed Central  Google Scholar 

Lukasiak A, Zajac M (2021) The distribution and role of the CFTR protein in the intracellular compartments. Membranes (Basel) 11:11. https://doi.org/10.3390/membranes11110804

Article  CAS  Google Scholar 

Dalemans W, Hinnrasky J, Slos P, Dreyer D, Fuchey C, Pavirani A et al (1992) Immunocytochemical analysis reveals differences between the subcellular localization of normal and ΔPhe508 recombinant cystic fibrosis transmembrane conductance regulator. Exp Cell Res 201(1):235–40. https://doi.org/10.1016/0014-4827(92)90368-I

Article  PubMed  CAS  Google Scholar 

Calamita G, Mazzone A, Bizzoca A, Svelto M (2001) Possible involvement of aquaporin-7 and -8 in rat testis development and spermatogenesis. Biochem Biophys Res Commun 288(3):619–25. https://doi.org/10.1006/bbrc.2001.5810

Article  PubMed  CAS  Google Scholar 

Boockfor FR, Morris RA, DeSimone DC, Hunt DM, Walsh KB (1998) Sertoli cell expression of the cystic fibrosis transmembrane conductance regulator. Am J Physiol. https://doi.org/10.1152/ajpcell.1998.274.4.C922

Article  PubMed  Google Scholar 

Teixeira S, Sá R, Grangeia A, Silva J, Oliveira C, Ferráz L et al (2013) Immunohystochemical analysis of CFTR in normal and disrupted spermatogenesis. Syst Biol Reprod Med 59(1):53–9. https://doi.org/10.3109/19396368.2012.718851

Article  PubMed  CAS  Google Scholar 

Kamsteeg EJ, Heijnen I, van Os CH, Deen PM (2000) The subcellular localization of an aquaporin-2 tetramer depends on the stoichiometry of phosphorylated and nonphosphorylated monomers. J Cell Biol 151(4):919–30. https://doi.org/10.1083/jcb.151.4.919

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kitchen P, Salman MM, Halsey AM, Clarke-Bland C, MacDonald JA, Ishida H et al (2020) Targeting aquaporin-4 subcellular localization to treat central nervous system edema. Cell 181(4):784–99.e19. https://doi.org/10.1016/j.cell.2020.03.037

Article  PubMed  PubMed Central  CAS  Google Scholar 

Mirabella N, Pelagalli A, Liguori G, Rashedul MA, Squillacioti C (2021) Differential abundances of AQP3 and AQP5 i

留言 (0)

沒有登入
gif