The dynamic lung microbiome in health and disease

Lloyd-Price, J., Abu-Ali, G. & Huttenhower, C. The healthy human microbiome. Genome Med. 8, 51 (2016).

PubMed  PubMed Central  Google Scholar 

de Steenhuijsen Piters, W. A. A., Binkowska, J. & Bogaert, D. Early life microbiota and respiratory tract infections. Cell Host Microbe 28, 223–232 (2020).

PubMed  Google Scholar 

Sulaiman, I. et al. Functional lower airways genomic profiling of the microbiome to capture active microbial metabolism. Eur. Respir. J. https://doi.org/10.1183/13993003.03434-2020 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Wu, B. G. et al. Episodic aspiration with oral commensals induces a MyD88-dependent, pulmonary T-helper cell type 17 response that mitigates susceptibility to Streptococcus pneumoniae. Am. J. Respir. Crit. Care Med. 203, 1099–1111 (2021).

CAS  PubMed  PubMed Central  Google Scholar 

Pattaroni, C. et al. Early-life formation of the microbial and immunological environment of the human airways. Cell Host Microbe 24, 857–865.e4 (2018).

CAS  PubMed  Google Scholar 

Thorsen, J. et al. Infant airway microbiota and topical immune perturbations in the origins of childhood asthma. Nat. Commun. 10, 5001 (2019).

PubMed  PubMed Central  Google Scholar 

Dickson, R. P. et al. Spatial variation in the healthy human lung microbiome and the adapted island model of lung biogeography. Ann. Am. Thorac. Soc. 12, 821–830 (2015).

PubMed  PubMed Central  Google Scholar 

Charlson, E. S. et al. Topographical continuity of bacterial populations in the healthy human respiratory tract. Am. J. Respir. Crit. Care Med. 184, 957–963 (2011).

PubMed  PubMed Central  Google Scholar 

Dickson, R. P. et al. Bacterial Topography of the Healthy Human Lower Respiratory Tract. mBio https://doi.org/10.1128/mBio.02287-16 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Segal, L. N. et al. Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a Th17 phenotype. Nat. Microbiol. 1, 16031 (2016).

CAS  PubMed  PubMed Central  Google Scholar 

Huang, Y. J. et al. The airway microbiome in patients with severe asthma: associations with disease features and severity. J. Allergy Clin. Immunol. 136, 874–884 (2015).

PubMed  PubMed Central  Google Scholar 

Dickson, R. P. et al. The lung microbiota of healthy mice are highly variable, cluster by environment, and reflect variation in baseline lung innate immunity. Am. J. Respir. Crit. Care Med. https://doi.org/10.1164/rccm.201711-2180OC (2018).

Article  PubMed  PubMed Central  Google Scholar 

Segal, L. N. et al. Anaerobic bacterial fermentation products increase tuberculosis risk in antiretroviral-drug-treated HIV patients. Cell Host Microbe 21, 530–537.e4 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Erb-Downward, J. R. et al. Analysis of the lung microbiome in the “healthy” smoker and in COPD. PLoS One 6, e16384 (2011).

CAS  PubMed  PubMed Central  Google Scholar 

Dickson, R. P., Erb-Downward, J. R. & Huffnagle, G. B. The role of the bacterial microbiome in lung disease. Expert Rev. Respir. Med. 7, 245–257 (2013).

CAS  PubMed  PubMed Central  Google Scholar 

Garcia-Nuñez, M. et al. Severity-related changes of bronchial microbiome in chronic obstructive pulmonary disease. J. Clin. Microbiol. 52, 4217–4223 (2014).

PubMed  PubMed Central  Google Scholar 

Tsay, J. J. et al. Airway microbiota is associated with upregulation of the PI3K pathway in lung cancer. Am. J. Respir. Crit. Care Med. 198, 1188–1198 (2018).

CAS  PubMed  PubMed Central  Google Scholar 

Gustafson, A. M. et al. Airway PI3K pathway activation is an early and reversible event in lung cancer development. Sci. Transl. Med. 2, 26ra25 (2010).

PubMed  PubMed Central  Google Scholar 

Sethi, S., Maloney, J., Grove, L., Wrona, C. & Berenson, C. S. Airway inflammation and bronchial bacterial colonization in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 173, 991–998 (2006).

PubMed  PubMed Central  Google Scholar 

Soler, N. et al. Airway inflammation and bronchial microbial patterns in patients with stable chronic obstructive pulmonary disease. Eur. Respir. J. 14, 1015–1022 (1999).

CAS  PubMed  Google Scholar 

Bresser, P., Out, T. A., van Alphen, L., Jansen, H. M. & Lutter, R. Airway inflammation in nonobstructive and obstructive chronic bronchitis with chronic haemophilus influenzae airway infection. Comparison with noninfected patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 162, 947–952 (2000).

CAS  PubMed  Google Scholar 

Parameswaran, G. I., Wrona, C. T., Murphy, T. F. & Sethi, S. Moraxella catarrhalis acquisition, airway inflammation and protease-antiprotease balance in chronic obstructive pulmonary disease. BMC Infect. Dis. 9, 178 (2009).

PubMed  PubMed Central  Google Scholar 

Rangelov, K. & Sethi, S. Role of infections. Clin. Chest Med. 35, 87–100 (2014).

PubMed  PubMed Central  Google Scholar 

Morris, A. et al. Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am. J. Respir. Crit. Care Med. 187, 1067–1075 (2013).

PubMed  PubMed Central  Google Scholar 

Segal, L. N. et al. Enrichment of lung microbiome with supraglottic taxa is associated with increased pulmonary inflammation. Microbiome 1, 19 (2013).

PubMed  PubMed Central  Google Scholar 

Opron, K. et al. Lung microbiota associations with clinical features of COPD in the SPIROMICS cohort. NPJ Biofilms Microbiomes 7, 14 (2021).

PubMed  PubMed Central  Google Scholar 

Morris, A. et al. Longitudinal analysis of the lung microbiota of cynomolgous macaques during long-term SHIV infection. Microbiome 4, 38 (2016).

PubMed  PubMed Central  Google Scholar 

Sze, M. A. et al. The lung tissue microbiome in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 185, 1073–1080 (2012).

PubMed  PubMed Central  Google Scholar 

Pragman, A. A., Kim, H. B., Reilly, C. S., Wendt, C. & Isaacson, R. E. The lung microbiome in moderate and severe chronic obstructive pulmonary disease. PLoS One 7, e47305 (2012).

CAS  PubMed  PubMed Central  Google Scholar 

Dicker, A. J. et al. The sputum microbiome, airway inflammation, and mortality in chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. https://doi.org/10.1016/j.jaci.2020.02.040 (2020).

Article  PubMed  Google Scholar 

Wang, Z. et al. Inflammatory endotype-associated airway microbiome in chronic obstructive pulmonary disease clinical stability and exacerbations: a multicohort longitudinal analysis. Am. J. Respir. Crit. Care Med. 203, 1488–1502 (2021).

CAS  PubMed  PubMed Central  Google Scholar 

Tufvesson, E., Bjermer, L. & Ekberg, M. Patients with chronic obstructive pulmonary disease and chronically colonized with Haemophilus influenzae during stable disease phase have increased airway inflammation. Int. J. Chron. Obstruct. Pulmon. Dis. 10, 881–889 (2015).

PubMed  PubMed Central  Google Scholar 

Sze, M. A. et al. The host response to the lung microbiome in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. https://doi.org/10.1164/rccm.201502-0223OC (2015).

Article  PubMed  PubMed Central  Google Scholar 

Cabello, H. et al. Bacterial colonization of distal airways in healthy subjects and chronic lung disease: a bronchoscopic study. Eur. Respir. J. 10, 1137–1144 (1997).

CAS  PubMed  Google Scholar 

Monso, E. et al. Risk factors for lower airway bacterial colonization in chronic bronchitis. Eur. Respir. J. 13, 338–342 (1999).

CAS  PubMed  Google Scholar 

Teo, S. M. et al. The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development. Cell Host Microbe 17, 704–715 (2015).

CAS  PubMed  PubMed Central  Google Scholar 

Teo, S. M. et al. Airway microbiota dynamics uncover a critical window for interplay of pathogenic bacteria and allergy in childhood respiratory disease. Cell Host Microbe 24, 341–352.e5 (2018).

CAS  PubMed  PubMed Central  Google Scholar 

Bosch, A. et al. Maturation of the infant respiratory microbiota, environmental drivers, and health consequences. a prospective cohort study. Am. J. Respir. Crit. Care Med. 196, 1582–1590 (2017).

PubMed  Google Scholar 

Zhou, Y. et al. The upper-airway microbiota and loss of asthma control among asthmatic children. Nat. Commun. 10, 5714 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

Huang, Y. J. et al. Airway microbiota and bronchial hyperresponsiveness in patients with suboptimally controlled asthma. J. Allergy Clin. Immunol. 127, 372–381 (2011).

PubMed  Google Scholar 

Hudey, S. N., Ledford, D. K. & Cardet, J. C. Mechanisms of non-type 2 asthma. Curr. Opin. Immunol. 66, 123–128 (2020).

CAS  PubMed  PubMed Central  Google Scholar 

O’Dwyer, D. N. et al. Lung microbiota contribute to pulmonary inflammation and disease progression in pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 199, 1127–1138 (2019).

PubMed  PubMed Central  Google Scholar 

Molyneaux, P. L. et al. The role of bacteria in the pathogenesis and progression of idiopathic pulmon

留言 (0)

沒有登入
gif