Designing modern aqueous batteries

Zhao, Y. et al. A review on battery market trends, second-life reuse, and recycling. Sustain. Chem. 2, 167–205 (2021).

CAS  Google Scholar 

Kurzweil, P. Gaston Planté and his invention of the lead–acid battery — the genesis of the first practical rechargeable battery. J. Power Sources 195, 4424–4434 (2010).

CAS  Google Scholar 

Pavlov, D. in Lead-Acid Batteries: Science and Technology (ed. Detchko, P.) 3–28 (Elsevier, 2011).

Bullock, K. R. & Salkind, A. J. in Linden’s Handbook of Batteries 4th edn (ed. Thomas, B. R.) Ch. 17 (McGraw-Hill Education, 2011).

Nakayama, Y., Hojo, E. & Koike, T. Development of VRLA battery for hybrid bus. J. Power Sources 124, 551–558 (2003).

CAS  Google Scholar 

Moseley, P. T. High rate partial-state-of-charge operation of VRLA batteries. J. Power Sources 127, 27–32 (2004).

CAS  Google Scholar 

Shukla, A. K., Venugopalan, S. & Hariprakash, B. Nickel-based rechargeable batteries. J. Power Sources 100, 125–148 (2001).

CAS  Google Scholar 

Carcone, J. A. in Linden’s Handbook of Batteries 4th edn (ed. Thomas, B. R.) Ch. 21 (McGraw-Hill Education, 2011).

Brill, J. N. in Linden’s Handbook of Batteries 4th edn (ed. Thomas, B. R.) Ch. 24 (McGraw-Hill Education, 2011).

Chang, S., Young, K.-H., Nei, J. & Fierro, C. Reviews on the U.S. patents regarding nickel/metal hydride batteries. Batteries 2, 10 (2016).

Google Scholar 

Rand, D. A. J., Holden, L. S., May, G. J., Newnham, R. H. & Peters, K. Valve-regulated lead/acid batteries. J. Power Sources 59, 191–197 (1996).

CAS  Google Scholar 

Nelson, R. The basic chemistry of gas recombination in lead–acid batteries. JOM 53, 28–33 (2001).

CAS  Google Scholar 

Ye, Z. & Noréus, D. Oxygen and hydrogen gas recombination in NiMH cells. J. Power Sources 208, 232–236 (2012).

CAS  Google Scholar 

Allebrod, F., Chatzichristodoulou, C., Mollerup, P. L. & Mogensen, M. B. Electrical conductivity measurements of aqueous and immobilized potassium hydroxide. Int. J. Hydrog. Energy 37, 16505–16514 (2012).

CAS  Google Scholar 

Carton, A., Sobron, F., Bolado, S. & Gerboles, J. I. Density, viscosity, and electrical conductivity of aqueous solutions of lithium sulfate. J. Chem. Eng. Data 40, 987–991 (1995).

CAS  Google Scholar 

Ai, F. et al. Heteropoly acid negolytes for high-power-density aqueous redox flow batteries at low temperatures. Nat. Energy 7, 417–426 (2022).

CAS  Google Scholar 

Singh, M., Kaiser, J. & Hahn, H. Thick electrodes for high energy lithium ion batteries. J. Electrochem. Soc. 162, A1196–A1201 (2015).

CAS  Google Scholar 

Deveau, J., White, C. & Swan, L. G. Lead-acid battery response to various formation levels — part A: recommended formation levels for off-grid solar and conventional applications. Sustain. Energy Technol. Assess. 11, 1–10 (2015).

Google Scholar 

Wu, W., Shabhag, S., Chang, J., Rutt, A. & Whitacre, J. F. Relating electrolyte concentration to performance and stability for NaTi2(PO4)3/Na0.44MnO2 aqueous sodium-ion batteries. J. Electrochem. Soc. 162, A803–A808 (2015).

CAS  Google Scholar 

Singh, A., Cornilsen, B., Mullins, M. & Rogers, T. Nickel hydroxide impregnated carbon foam electrodes for rechargeable nickel batteries. US patent US20060024583A1 (2006).

Lai, Y. Q. et al. Electrochemical performance of a Pb/Pb-MnO2 composite anode in sulfuric acid solution containing Mn2+. Hydrometallurgy 115–116, 64–70 (2012).

Google Scholar 

Wessells, C., Ruffο, R., Huggins, R. A. & Cui, Y. Investigations of the electrochemical stability of aqueous electrolytes for lithium battery applications. Electrochem. Solid State Lett. 13, A59–A61 (2010).

CAS  Google Scholar 

Nakamura, K., Shiomi, M., Takahashi, K. & Tsubota, M. Failure modes of valve-regulated lead/acid batteries. J. Power Sources 59, 153–157 (1996).

CAS  Google Scholar 

He, P., Liu, J.-L., Cui, W.-J., Luo, J.-Y. & Xia, Y.-Y. Investigation on capacity fading of LiFePO4 in aqueous electrolyte. Electrochim. Acta 56, 2351–2357 (2011).

CAS  Google Scholar 

Gheytani, S., Liang, Y., Jing, Y., Xu, J. Q. & Yao, Y. Chromate conversion coated aluminium as a light-weight and corrosion-resistant current collector for aqueous lithium-ion batteries. J. Mater. Chem. A 4, 395–399 (2016).

CAS  Google Scholar 

Juda, W. & McRae, W. A. Coherent ion-exchange gels and membranes. J. Am. Chem. Soc. 72, 1044–1044 (1950).

CAS  Google Scholar 

Mauritz, K. A. & Moore, R. B. State of understanding of Nafion. Chem. Rev. 104, 4535–4586 (2004).

CAS  Google Scholar 

Thaller, L. H. Electrically rechargeable redox flow cell. US patent US3996064A (1976).

Noya, S., Uchida, M. & Yoshino, M. Double fluid cell. Patent JPH04101358A (1992).

Visco, S. J., Nimon, E. & Katz, B. The development of high energy density lithium/air and lithium/water batteries with no self-discharge. ECS Meet. Abstr. MA2006-02, 389–389 (2006).

Google Scholar 

Imanishi, N. et al. Lithium anode for lithium-air secondary batteries. J. Power Sources 185, 1392–1397 (2008).

CAS  Google Scholar 

Li, H., Wang, Y., Na, H., Liu, H. & Zhou, H. Rechargeable Ni-Li battery integrated aqueous/nonaqueous system. J. Am. Chem. Soc. 131, 15098–15099 (2009).

CAS  Google Scholar 

Hasegawa, S. et al. Study on lithium/air secondary batteries — stability of NASICON-type lithium ion conducting glass–ceramics with water. J. Power Sources 189, 371–377 (2009).

CAS  Google Scholar 

Zhang, T. et al. A novel high energy density rechargeable lithium/air battery. Chem. Commun. 46, 1661–1663 (2010).

CAS  Google Scholar 

Yang, T., Liu, X., Sang, L. & Ding, F. Control of interface of glass-ceramic electrolyte/liquid electrolyte for aqueous lithium batteries. J. Power Sources 244, 43–49 (2013).

CAS  Google Scholar 

Suo, L. et al. ‘Water-in-salt’ electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015).

CAS  Google Scholar 

Dubouis, N. et al. The role of the hydrogen evolution reaction in the solid–electrolyte interphase formation mechanism for ‘water-in-salt’ electrolytes. Energy Environ. Sci. 11, 3491–3499 (2018).

CAS  Google Scholar 

Yang, C. et al. 4.0 V aqueous Li-ion batteries. Joule 1, 122–132 (2017).

CAS  Google Scholar 

Wang, F. et al. Hybrid aqueous/non-aqueous electrolyte for safe and high-energy Li-ion batteries. Joule 2, 927–937 (2018).

CAS  Google Scholar 

Zhang, J. et al. ‘Water-in-salt’ polymer electrolyte for Li-ion batteries. Energy Environ. Sci. 13, 2878–2887 (2020).

CAS  Google Scholar 

Cao, L. et al. Solvation structure design for aqueous Zn metal batteries. J. Am. Chem. Soc. 142, 21404–21409 (2020).

CAS  Google Scholar 

Viswanathan, V. et al. Cost and performance model for redox flow batteries. J. Power Sources 247, 1040–1051 (2014).

CAS  Google Scholar 

Yuan, Z. et al. Low-cost hydrocarbon membrane enables commercial-scale flow batteries for long-duration energy storage. Joule 6, 884–905 (2022).

CAS  Google Scholar 

Li, Z. & Lu, Y.-C. Polysulfide-based redox flow batteries with long life and low levelized cost enabled by charge-reinforced ion-selective membranes. Nat. Energy 6, 517–528 (2021).

CAS  Google Scholar 

Yamada, Y. et al. Hydrate-melt electrolytes for high-energy-density aqueous batteries. Nat. Energy 1, 16129 (2016).

CAS  Google Scholar 

Suo, L. et al. Advanced high-voltage aqueous lithium-ion battery enabled by ‘water-in-bisalt’ electrolyte. Angew. Chem. 128, 7252–7257 (2016).

Google Scholar 

Zheng, J. et al. Understanding thermodynamic and kinetic contributions in expanding the stability window of aqueous electrolytes. Chem 4, 2872–2882 (2018).

CAS  Google Scholar 

Nakamoto, K., Sakamoto, R., Ito, M., Kitajou, A. & Okada, S. Effect of concentrated electrolyte on aqueous sodium-ion battery with sodium manganese hexacyanoferrate cathode. Electrochemistry 85, 179–185 (2017).

CAS  Google Scholar 

Leonard, D. P., Wei, Z., Chen, G., Du, F. & Ji, X. Water-in-salt electrolyte for potassium-ion batteries. ACS Energy Lett. 3, 373–374 (2018).

CAS  Google Scholar 

Lukatskaya, M. R. et al. Concentrated mixed cation acetate ‘water-in-salt’ solutions as green and low-cost high voltage electrolytes for aqueous batteries. Energy Environ. Sci. 11, 2876–2883 (2018).

CAS  Google Scholar 

Zhang, C. et al. A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode. Chem. Commun. 54, 14097–14099 (2018).

CAS  Google Scholar 

Li, T., Li, M., Li, H. & Zhao, H. High-voltage and long-lasting aqueous chlorine-ion battery by virtue of ‘water-in-salt’ electrolyte. iScience 24, 101976 (2021).

CAS  Google Scholar 

He, X. et al. Fluorine-free water-in-ionomer electrolytes for sustainable lithium-ion batteries. Nat. Commun. 9, 5320 (2018).

CAS  Google Scholar 

Zhao, J. et al. ‘Water-in-deep eutectic solvent’ electrolytes enable zinc metal anodes for rechargeable aqueous batteries. Nano Energy 57, 625–634 (2019).

CAS  Google Scholar 

Xie, J., Liang, Z. & Lu, Y.-C. Molecular crowding electrolytes for high-voltage aqueous batteries. Nat. Mater. 19, 1006–1011 (2020).

CAS  Google Scholar 

Peng, M. et al. Molecular crowding agents engineered to make bioinspired electrolytes for high-voltage aqueous supercapacitors. eScience 1, 83–90 (2021).

Google Scholar 

Hao, J. et al. Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents. Angew. Chem. Int. Ed. 60, 7366–7375 (2021).

CAS  Google Scholar 

Bi, H. et al. A universal approach to aqueous energy storage via ultralow-cost electrolyte with super-concentrated sugar as hydrogen-bond-regulated solute. Adv. Mater. 32, 2000074 (2020).

CAS  Google Scholar 

Sun, Y. et al. Low-cost and long-life Zn/Prussian blue battery using a water-in-ethanol electrolyte with a normal salt concentration. Energy Storage Mater. 48, 192–204 (2022).

Google Scholar 

Jaumaux, P. et al. Non-flammable liquid and quasi-solid electrolytes toward highly-safe alkali metal-based batteries. Adv. Funct. Mater. 31, 2008644 (2021).

CAS  Google Scholar 

Bin, D., Wen, Y., Wang, Y. & Xia, Y. The development in aqueous lithium-ion batteries. J. Energy Chem. 27, 1521–1535 (2018).

Google Scholar 

Poizot, P. et al. Opportunities and challenges for organic electrodes in electrochemical energy storage. Chem. Rev. 120, 6490–6557 (2020).

CAS  Google Scholar 

Ruan, P., Liang, S., Lu, B., Fan, H. J. & Zhou, J. Design strategies for high‐energy-density aqueous zinc batteries. Angew. Chem. Int. Ed. 61, e202200598 (2022).

CAS  Google Scholar 

Liu, Z. et al. Issues and opportunities facing aqueous Mn2+/MnO2-based batteries. ChemSusChem 15, e202200348 (2022).

留言 (0)

沒有登入
gif