Pharmacokinetics of chromium-enriched yeast in rats following oral administration

Authority EFS (2009) Inability to assess the safety of chromium-enriched yeast added for nutritional purposes as a source of chromium in food supplements and the bioavailability of chromium from this source, based on the supporting dossiers. EFSA J 7(6):1083. https://doi.org/10.2903/j.efsa.2009.1083

Article  Google Scholar 

Cheng HH, Lai MH, Hou WC, Huang CL (2004) Antioxidant effects of chromium supplementation with type 2 diabetes mellitus and euglycemic subjects. J Agric Food Chem 52(5):1385–1389. https://doi.org/10.1021/jf035074j

Article  CAS  PubMed  Google Scholar 

Chinese Nutrition Society (2014) Chinese dietary reference intakes 2013. Science Press, China

Collins BJ, Stout MD, Levine KE, Kissling GE, Melnick RL, Fennell TR, Walden R, Abdo K, Pritchard JB, Fernando RA, Burka LT, Hooth MJ (2010) Exposure to hexavalent chromium resulted in significantly higher tissue chromium burden compared with trivalent chromium following similar oral doses to male F344/N rats and female B6C3F1 mice. Toxicol Sci 118(2):368–379. https://doi.org/10.1093/toxsci/kfq263

Article  CAS  PubMed  PubMed Central  Google Scholar 

Febel H, Szegedi B, Huszar S (2001) Absorption of inorganic, trivalent and hexavalent chromium following oral and intrajejunal doses in rats. Acta Vet Hung 49(2):203–209. https://doi.org/10.1556/004.49.2001.2.10

Article  CAS  PubMed  Google Scholar 

Feng W, Li Q, Wang W, Zhao T, Feng Y, Li F, Mao G, Chen Y, Ding Y, Yang L, Wu X (2018) Pharmacokinetics and bioavailability of chromium malate and its influence on trace metals absorption after oral or intravenous administration. Indian J Pharmacol 50(2):75–83. https://doi.org/10.4103/ijp.IJP_505_17

Article  CAS  PubMed  PubMed Central  Google Scholar 

Food EPoFANSat (2010a) Scientific opinion on the safety of trivalent chromium as a nutrient added for nutritional purposes to foodstuffs for particular nutritional uses and foods intended for the general population (including food supplements). EFSA Journal 8 (12):1882. https://doi.org/10.2903/j.efsa.2010.1882

Food EPoFANSat (2010b) Scientific opinion on the safety of chromium picolinate as a source of chromium added for nutritional purposes to foodstuff for particular nutritional uses and to foods intended for the general population. EFSA Journal 8 (12):1883. https://doi.org/10.2903/j.efsa.2010.1883

Food EPoFaNSat (2012) Scientific opinion on ChromoPrecise® cellular bound chromium yeast added for nutritional purposes as a source of chromium in food supplements and the bioavailability of chromium from this source. EFSA Journal 10 (11):2951. https://doi.org/10.2903/j.efsa.2012.2951

Kerger BD, Paustenbach DJ, Corbett GE, Finley BL (1996) Absorption and elimination of trivalent and hexavalent chromium in humans following ingestion of a bolus dose in drinking water. Toxicol Appl Pharmacol 141(1):145–158. https://doi.org/10.1006/taap.1996.0271

Article  CAS  PubMed  Google Scholar 

Kottwitz K, Laschinsky N, Fischer R, Nielsen P (2009) Absorption, excretion and retention of 51Cr from labelled Cr-(III)-picolinate in rats. Biometals 22(2):289–295. https://doi.org/10.1007/s10534-008-9165-4

Article  CAS  PubMed  Google Scholar 

Laschinsky N, Kottwitz K, Freund B, Dresow B, Fischer R, Nielsen P (2012) Bioavailability of chromium (III)-supplements in rats and humans. Biometals 25(5):1051–1060. https://doi.org/10.1007/s10534-012-9571-5

Article  CAS  PubMed  Google Scholar 

O’Flaherty EJ (1993) A pharmacokinetic model for chromium. Toxicol Lett 68(1–2):145–158. https://doi.org/10.1016/0378-4274(93)90127-j

Article  CAS  PubMed  Google Scholar 

O’Flaherty EJ (1996) A physiologically based model of chromium kinetics in the rat. Toxicol Appl Pharmacol 138(1):54–64. https://doi.org/10.1006/taap.1996.0097

Article  CAS  PubMed  Google Scholar 

O’Flaherty EJ, Kerger BD, Hays SM, Paustenbach DJ (2001) A physiologically based model for the ingestion of chromium (III) and chromium (VI) by humans. Toxicol Sci 60(2):196–213. https://doi.org/10.1093/toxsci/60.2.196

Article  CAS  PubMed  Google Scholar 

Pechancová R, Pluháček T, Milde D (2019) Recent advances in chromium speciation in biological samples. Spectrochim Acta, Part B 152:109–122. https://doi.org/10.1016/j.sab.2018.12.008

Article  CAS  Google Scholar 

Racek J, Trefil L, Rajdl D, Mudrová V, Hunter D, Senft V (2006) Influence of chromium-enriched yeast on blood glucose and insulin variables, blood lipids, and markers of oxidative stress in subjects with type 2 diabetes mellitus. Biol Trace Elem Res 109(3):215–230. https://doi.org/10.1385/bter:109:3:215

Article  CAS  PubMed  Google Scholar 

Racek J, Sindberg CD, Moesgaard S, Mainz J, Fabry J, Müller L, Rácová K (2013) Effect of chromium-enriched yeast on fasting plasma glucose, glycated haemoglobin and serum lipid levels in patients with type 2 diabetes mellitus treated with insulin. Biol Trace Elem Res 155(1):1–4. https://doi.org/10.1007/s12011-013-9758-9

Article  CAS  PubMed  Google Scholar 

Schlosser PM, Sasso AF (2014) A revised model of ex-vivo reduction of hexavalent chromium in human and rodent gastric juices. Toxicol Appl Pharmacol 280(2):352–361. https://doi.org/10.1016/j.taap.2014.08.010

Article  CAS  PubMed  Google Scholar 

Vincent JB (2007) The nutritional biochemistry of chromium (III) (2007). Elsevier, Netherlands

Google Scholar 

Zhang SQ, Chen GH, Lu WL, Zhang Q (2007) Effects on the bones of vanadyl acetylacetonate by oral administration: a comparison study in diabetic rats. J Bone Miner Metab 25(5):293–301. https://doi.org/10.1007/s00774-007-0759-7

Article  CAS  PubMed  Google Scholar 

Zhang SQ, Cheng SH, Shen S, Luo BY, Zhang Y (2021) Speciation analysis of chromium in chromium-enriched yeast by ion chromatography-inductively coupled plasma mass spectrometry. Biol Trace Elem Res 199(1):338–343. https://doi.org/10.1007/s12011-020-02149-0

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif