Ginsenoside Rg1 in neurological diseases: From bench to bedside

Sanacora G, Yan Z, Popoli M. The stressed synapse 2.0: Pathophysiological mechanisms in stress-related neuropsychiatric disorders. Nat Rev Neurosci. 2022;23:86–103.

PubMed  CAS  Google Scholar 

Dorsey ER, Sherer T, Okun MS, Bloem BR. The emerging evidence of the Parkinson pandemic. J Parkinsons Dis. 2018;8:S3–8.

PubMed  PubMed Central  Google Scholar 

Group GBDNDC. Global, regional, and national burden of neurological disorders during 1990-2015: A systematic analysis for the global burden of disease study 2015. Lancet Neurol. 2017;16:877–97.

Google Scholar 

McCarron RM, Shapiro B, Rawles J, Luo J. Depression. Ann Intern Med. 2021;174:ITC65–ITC80.

PubMed  Google Scholar 

Yang HS. Human genetics clarifies the relationship between depression and Alzheimer’s disease. Biol Psychiatry. 2022;92:2–4.

PubMed  Google Scholar 

Zhang C, Wang L, Xu Y, Huang Y, Huang J, Zhu J, et al. Discovery of novel dual RAGE/SERT inhibitors for the potential treatment of the comorbidity of Alzheimer’s disease and depression. Eur J Med Chem. 2022;236:114347.

PubMed  CAS  Google Scholar 

Cummings J, Feldman HH, Scheltens P. The “rights” of precision drug development for Alzheimer’s disease. Alzheimers Res Ther. 2019;11:76.

PubMed  PubMed Central  Google Scholar 

Yang S, Zhu G. 7,8-dihydroxyflavone and neuropsychiatric disorders: A translational perspective from the mechanism to drug development. Curr Neuropharmacol. 2022;20:1479–97.

PubMed  Google Scholar 

Jiang B, Xiong Z, Yang J, Wang W, Wang Y, Hu ZL, et al. Antidepressant-like effects of ginsenoside rg1 are due to activation of the bdnf signalling pathway and neurogenesis in the hippocampus. Br J Pharmacol. 2012;166:1872–87.

PubMed  PubMed Central  CAS  Google Scholar 

Yi YS. New mechanisms of ginseng saponin-mediated anti-inflammatory action via targeting canonical inflammasome signaling pathways. J Ethnopharmacol. 2021;278:114292.

PubMed  CAS  Google Scholar 

Ai PH, Chen S, Liu XD, Zhu XN, Pan YB, Feng DF, et al. Paroxetine ameliorates prodromal emotional dysfunction and late-onset memory deficit in Alzheimer’s disease mice. Transl Neurodegener. 2020;9:18.

PubMed  PubMed Central  CAS  Google Scholar 

Kawakami I, Iga JI, Takahashi S, Lin YT, Fujishiro H. Towards an understanding of the pathological basis of senile depression and incident dementia: Implications for treatment. Psychiatry Clin Neurosci. 2022. https://doi.org/10.1111/pcn.13485

Article  PubMed  PubMed Central  Google Scholar 

Juszczyk G, Mikulska J, Kasperek K, Pietrzak D, Mrozek W, Herbet M. Chronic stress and oxidative stress as common factors of the pathogenesis of depression and alzheimer’s disease: The role of antioxidants in prevention and treatment. Antioxidants (Basel). 2021;10:1439.

CAS  Google Scholar 

Linnemann C, Lang UE. Pathways connecting late-life depression and dementia. Front Pharmacol. 2020;11:279.

PubMed  PubMed Central  CAS  Google Scholar 

Li C, Sui C, Wang W, Yan J, Deng N, Du X, et al. Baicalin attenuates oxygen-glucose deprivation/reoxygenation-induced injury by modulating the BDNF-TRKB/PI3K/AKT and MAPK/ERK1/2 signaling axes in neuron-astrocyte cocultures. Front Pharmacol. 2021;12:599543.

PubMed  PubMed Central  CAS  Google Scholar 

Wang ZH, Xiang J, Liu X, Yu SP, Manfredsson FP, Sandoval IM, et al. Deficiency in BDNF/TrkB neurotrophic activity stimulates delta-secretase by upregulating C/EBPbeta in Alzheimer’s disease. Cell Rep. 2019;28:655–69.e5.

PubMed  PubMed Central  CAS  Google Scholar 

Lim JY, Reighard CP, Crowther DC. The pro-domains of neurotrophins, including BDNF, are linked to Alzheimer’s disease through a toxic synergy with abeta. Hum Mol Genet. 2015;24:3929–38.

PubMed  PubMed Central  CAS  Google Scholar 

Guan W, Xu DW, Ji CH, Wang CN, Liu Y, Tang WQ, et al. Hippocampal miR-206-3p participates in the pathogenesis of depression via regulating the expression of BDNF. Pharmacol Res. 2021;174:105932.

PubMed  CAS  Google Scholar 

Fani G, Mannini B, Vecchi G, Cascella R, Cecchi C, Dobson CM, et al. Abeta oligomers dysregulate calcium homeostasis by mechanosensitive activation of AMPA and NMDA receptors. ACS Chem Neurosci. 2021;12:766–81.

PubMed  CAS  Google Scholar 

Miyamoto T, Stein L, Thomas R, Djukic B, Taneja P, Knox J, et al. Phosphorylation of tau at Y18, but not tau-fyn binding, is required for Tau to modulate nmda receptor-dependent excitotoxicity in primary neuronal culture. Mol Neurodegener. 2017;12:41.

PubMed  PubMed Central  Google Scholar 

Song Z, Bian Z, Zhang Z, Wang X, Zhu A, Zhu G. Astrocytic kir4.1 regulates nmdar/calpain signaling axis in lipopolysaccharide-induced depression-like behaviors in mice. Toxicol Appl Pharmacol. 2021;429:115711.

PubMed  CAS  Google Scholar 

Arimon M, Takeda S, Post KL, Svirsky S, Hyman BT, Berezovska O. Oxidative stress and lipid peroxidation are upstream of amyloid pathology. Neurobiol Dis. 2015;84:109–19.

PubMed  PubMed Central  CAS  Google Scholar 

Pena-Bautista C, Tirle T, Lopez-Nogueroles M, Vento M, Baquero M, Chafer-Pericas C. Oxidative damage of DNA as early marker of Alzheimer’s disease. Int J Mol Sci. 2019;20:6136.

PubMed Central  CAS  Google Scholar 

Mahmoud AM, Alexander MY, Tutar Y, Wilkinson FL, Venditti A. Oxidative stress in metabolic disorders and drug-induced injury: The potential role of Nrf2 and PPARs activators. Oxid Med Cell Longev. 2017;2017:2508909.

PubMed  PubMed Central  Google Scholar 

Song L, Wu X, Wang J, Guan Y, Zhang Y, Gong M, et al. Antidepressant effect of catalpol on corticosterone-induced depressive-like behavior involves the inhibition of HPA axis hyperactivity, central inflammation and oxidative damage probably via dual regulation of NF-kappab and Nrf2. Brain Res Bull. 2021;177:81–91.

PubMed  CAS  Google Scholar 

Diniz BS, Mendes-Silva AP, Silva LB, Bertola L, Vieira MC, Ferreira JD, et al. Oxidative stress markers imbalance in late-life depression. J Psychiatr Res. 2018;102:29–33.

PubMed  Google Scholar 

Shen F, Song Z, Xie P, Li L, Wang B, Peng D, et al. Polygonatum sibiricum polysaccharide prevents depression-like behaviors by reducing oxidative stress, inflammation, and cellular and synaptic damage. J Ethnopharmacol. 2021;275:114164.

PubMed  CAS  Google Scholar 

Scheltens P, De Strooper B, Kivipelto M, Holstege H, Chetelat G, Teunissen CE, et al. Alzheimer’s disease. Lancet. 2021;397:1577–90.

PubMed  PubMed Central  CAS  Google Scholar 

Wang X, Gao F, Xu W, Cao Y, Wang J, Zhu G. Depichering the effects of Astragaloside IV on AD-like phenotypes: A systematic and experimental investigation. Oxid Med Cell Longev. 2021;2021:1020614.

PubMed  PubMed Central  Google Scholar 

Min W, Liu C, Yang Y, Sun X, Zhang B, Xu L, et al. Alterations in hypothalamic-pituitary-adrenal/thyroid (HPA/HPT) axes correlated with the clinical manifestations of depression. Prog Neuropsychopharmacol Biol Psychiatry. 2012;39:206–11.

PubMed  CAS  Google Scholar 

Song Z, Shen F, Zhang Z, Wu S, Zhu G. Calpain inhibition ameliorates depression-like behaviors by reducing inflammation and promoting synaptic protein expression in the hippocampus. Neuropharmacology. 2020;174:108175.

PubMed  CAS  Google Scholar 

Mahar I, Bambico FR, Mechawar N, Nobrega JNStress. serotonin, and hippocampal neurogenesis in relation to depression and antidepressant effects. Neurosci Biobehav Rev. 2014;38:173–92.

PubMed  CAS  Google Scholar 

Kim Y, Cho SH. The effect of ginsenosides on depression in preclinical studies: A systematic review and meta-analysis. J Ginseng Res. 2021;45:420–32.

PubMed  Google Scholar 

O’Connor DB, Thayer JF, Vedhara K. Stress and health: A review of psychobiological processes. Annu Rev Psychol. 2021;72:663–88.

PubMed  Google Scholar 

Dwyer JB, Aftab A, Radhakrishnan R, Widge A, Rodriguez CI, Carpenter LL, et al. Hormonal treatments for major depressive disorder: State of the art. Am J Psychiatry. 2020;177:686–705.

PubMed  PubMed Central  Google Scholar 

Mou Z, Huang Q, Chu SF, Zhang MJ, Hu JF, Chen NH, et al. Antidepressive effects of ginsenoside Rg1 via regulation of HPA and HPG axis. Biomed Pharmacother. 2017;92:962–71.

PubMed  CAS  Google Scholar 

Zheng X, Liang Y, Kang A, Ma SJ, Xing L, Zhou YY, et al. Peripheral immunomodulation with ginsenoside Rg1 ameliorates neuroinflammation-induced behavioral deficits in rats. Neuroscience. 2014;256:210–22.

PubMed  CAS  Google Scholar 

Wang YT, Wang XL, Feng ST, Chen NH, Wang ZZ, Zhang Y. Novel rapid-acting glutamatergic modulators: Targeting the synaptic plasticity in depression. Pharmacol Res. 2021;171:105761.

PubMed  CAS  Google Scholar 

Duman RS, Aghajanian GK, Sanacora G, Krystal JH. Synaptic plasticity and depression: New insights from stress and rapid-acting antidepressants. Nat Med. 2016;22:238–49.

PubMed  PubMed Central  CAS  Google Scholar 

Fan C, Song Q, Wang P, Li Y, Yang M, Yu SY. Neuroprotective effects of ginsenoside-Rg1 against depression-like behaviors via suppressing glial activation, synaptic deficits, and neuronal apoptosis in rats. Front Immunol. 2018;9:2889.

PubMed  PubMed Central  CAS  Google Scholar 

Liu Z, Qi Y, Cheng Z, Zhu X, Fan C, Yu SY. The effects of ginsenoside Rg1 on chronic stress induced depression-like behaviors, BDNF expression and the phosphorylation of PKA and CREB in rats. Neuroscience. 2016;322:358–69.

PubMed  CAS  Google Scholar 

Zhu X, Gao R, Liu Z, Cheng Z, Qi Y, Fan C, et al. Ginsenoside Rg1 reverses stress-induced depression-like behaviours and brain-derived neurotrophic factor expression within the prefrontal cortex. Eur J Neurosci. 2016;44:1878–85.

PubMed  Google Scholar 

Wang J, Shen F, Zhang Z, Zhu G. Effects of ginsenoside Rg1 on depression-like behaviors, expression of hippocampal synaptic proteins and activation of glial cells in stressed mice. J Biol. 2021;38:26–30.

留言 (0)

沒有登入
gif