A Non-radiometric Approach to Determine Tissue Vascular Blood Volume in Biodistribution Studies

Wang W, Wang EQ, Balthasar JP. Monoclonal antibody pharmacokinetics and pharmacodynamics. Clinc Pharmaco Therap. 2008;84(5):548–58.

Article  Google Scholar 

Vugmeyster Y, Xu X, Theil FP, Khawli LA, Leach MW. Pharmacokinetics and toxicology of therapeutic protein: advance and challenges. World J Biol Chem. 2012;3(4):73–92.

Article  PubMed  PubMed Central  Google Scholar 

Tabrizi MA, Tseng CML, Roskos LK. Elimination mechanism of therapeutic monoclonal antibodies. Drug Discov Today. 2006;11(1/2):81–8.

Article  PubMed  Google Scholar 

Tabrizi MA, Bornstein GG, Klakamp SL, Drake A, Knight R. Roskos L. Translational strategies for development of monoclonal antibodies from discovery to clinic. Drug Discov Today. 2009;14(5/6): 298–30.

Mould DR, Sweeney KRD. The pharmacokinetics and pharmacodynamics of monoclonal antibodies-mechanistic modeling applied to drug development. Drug Discov Dev. 2007;10(1):84–96.

Google Scholar 

Tabrizi M, Funelas C, Suria H. Application of quantitative pharmacology in development of therapeutic monoclonal antibodies. AAPS J. 2010;12(4):592–601.

Article  PubMed  PubMed Central  Google Scholar 

Walker, KW, Salimi-Moosavi H, Arnold GE, Chen Q, Soto M, Jacobsen FW, Hui J. Pharmacokinetic comparison of a diverse panel of non-targeting human antibodies as matched IgG1 and IgG2 isotypes in rodents and non-human primates. PLoS ONE 14(5):e0217061. https://doi.org/10.1371/journal.pone.021706.

Tabrizi MA, Bornstein GG, Suria H. Biodistribution mechanism of therapeutic monoclonal antibodies in health and disease. AAPS J. 2010;12(1):33–43.

Article  PubMed  Google Scholar 

Lee JW, Kelley M, King LE, Yang J, Salimi-Moosavi H, Tang MT, Lu J-F, Kamerud J, Ahene A, Myler H, Rogers C. Bioanalytical approaches to quantify “total” and “free” therapeutic antibodies and their targets: technical challenges and PK/PD applications over the course of drug development. AAPS J. 2011;13(1):99–110.

Article  PubMed  PubMed Central  Google Scholar 

LeBlanc PP. Drug distribution in the body. Gen Pharmac. 1988;19(3):357–60.

Article  Google Scholar 

Shah DK, Bets AM. Antibody biodistribution coefficients. mAbs. 2013;5(2):297–305.

Article  PubMed  PubMed Central  Google Scholar 

Baxter LT, Zu H, Mackensen DG, Jain RH. Physiologically based pharmacokinetic model for specific and nonspecific monoclonal antibodies and fragments in normal tissues and human tumor xenografts in nude mice. Cancer Res. 1994;54(6):1517–1528.

Richter WF, Bhansali SG, Morris ME. Mechanistic determination of biotherapeutics absorption following SC administration. AAPS J. 2012;14(3):559–70.

Article  PubMed  PubMed Central  Google Scholar 

Gill KL, Gardner I, Li L, Jamei M. A bottom-up whole-body physiologically based pharmacokinetic model to mechanistically predict tissue distribution and the rate of subcutaneous absorption of therapeutic proteins. AAPS J. 2016;18(1):156–70.

Article  PubMed  Google Scholar 

Yip V, Palma E, Tesar DB, Mundo EE, Bumbaca D, Torres EK, Reyes NA, Shen BQ, Fielder PJ, Pebhu S, Khawli LA, Boswell CA. Quantitative cumulative biodistribution of antibodies in mice. mAbs. 2014;6(3):689–96.

Article  PubMed  PubMed Central  Google Scholar 

Abuqayyas L, Balthasar J. Pharmacokinetic mAb-mAb interaction: anti-VEGF mAb decreases the distribution of anti-CEA mAb into colorectal xenografts. AAPS J. 2012;14(3):445–55.

Article  PubMed  PubMed Central  Google Scholar 

Vugmeyster Y, Defranco D, Szklut P, Wang Q, Xu X. Biodistribution of [125I]-labeled therapeutic protein: application in protein drug development beyond oncology. J Pharmaco Sci. 2010;99(2):1028–45.

Article  Google Scholar 

Kamth AV, Williams SP, Bullens S, Cowan KJ, Stenberg Y, Chery SR, Rending S, Lukis DL, Griesmer C, Damico-Beyer LA, Bunting S. Pharmacokinetics and biodistribution of human monoclonal antibody to oxidized LDL in cynomolgus monkey using PET imaging. PLOS One. 2012;7(9):1–8.

Google Scholar 

Bernareggi A, Rowlan M. Physiologic of cyclosporin kinetics in rat and man. J Pharmaco Biopharm. 1991;19(1):21–50.

Article  Google Scholar 

Boswell CA, Ferl GZ, Mundo EE, Schweiger MG, Marik J, Reich MP, Theil FP, Fielder PJ, Khawli LA. Development and evaluation of a novel method for preclinical measurement of tissue vascular volume. Mol Pharm. 2010;7(5):1848–57.

Article  PubMed  Google Scholar 

Boswell CA, Mundo EE, Ulufatu S, Bumbaca D, Cahaya HS, Majidy N, Hoy MV, Schweiger MG, Fielder PJ, Prabhu S, Khawli LA. Comparative physiology of mice and rats: radiometric measurement of vascular parameters in rodent tissues. Mol Pharm. 2014;11:1591–8.

Article  PubMed  Google Scholar 

Brown RP, Delp MD, Lindstedt SL, Rhoberg LR, Beliles RP. Physiological parameter values for physiological based pharmacokinetic models. Toxicol Ind Health. 1997;13(4):407–84.

Article  PubMed  Google Scholar 

Vlot AHC, Witte WEA, Dahof M, Graaf PH, Westen GJP, Lange ECM. Target and tissue selectivity prediction by integrated mechanistic pharmacokinetic-target binding and quantitative structure activity modeling. AAPS J. 2018;20(1):11. https://doi.org/10.1208/s12248-017-0172-7.

Article  Google Scholar 

Deng R, Iyer S, Theil FP, Mortensen DL, Fielder PJ, Prabhu S. Projecting human pharmacokinetics of therapeutic antibodies from nonclinical data. mAbs. 2011;3(1):61–6.

Article  PubMed  PubMed Central  Google Scholar 

Smith AD, Beaumont K, Maurer TS, Di L. Volume of distribution in drug design. J Med Chem. 2015;58(15):5691–8.

Article  PubMed  Google Scholar 

Wan H. An overall comparison of small molecules and large biologics in ADME testing. ADMET& DMPK. 2016;4(1):1–22. https://doi.org/10.5599/admet.4.1.276.

Roopenian DC, Akilesh S. FcRn: the neonatal Fc receptor comes of age. Nature Rev Immuno. 2007;7(9):715–25.

Article  Google Scholar 

Datta-Mannan A, Witcher DR, Tang Y, Watkins J, Wroblewski VJ. Monoclonal antibody clearance-impact of modulating the interaction of IgG with neonatal Fc receptor. J Biol Chem. 2007;282(3):1709–17.

Article  PubMed  Google Scholar 

Chen N, Wang W, Fauty S, Fang Y, Hamuro L, Hussain A, Prueksartanont T. The effect of the neonatal fc receptor on human IgG biodistribution in mice. Mabs. 2014;6(2):502–8.

Article  PubMed  PubMed Central  Google Scholar 

Wang W, Lu P, Hamuro L, Pittman T, Carr B, Hochman J, Prueksartanont T. Monoclonal antibodies with identical Fc sequence can bind to FcRn differently with pharmacokinetic consequence. Drug Met Disp. 2011;39(9):1469–77.

Article  Google Scholar 

Leabman MK, Meng YG, Kelly RF, DeForge L, Cowan KJ, Iyer S. Effect of altered FcγR binding on antibody pharmacokinetics in cynomolgus monkeys. mAbs. 2013;5(6):896–903.

Article  PubMed  PubMed Central  Google Scholar 

Kim J, Hayton WL, Robinson JM, Anderson CL. Kinetics of FcRn-mediated recycling of IgG and albumin in human: pathophysiology and therapeutic implications using a simplified mechanism-based model. Clinc Immun. 2007;122(2):146–55.

Article  Google Scholar 

Leelawattanachai J, Kwon KW, Michael P, Ting R, Kim JY, Jin MM. Side-by side comparison of commonly used biomolecules that differs in size and affinity on tumor uptake and internalization. PLoS ONE 10(4):e0124440. https://doi.org/10.1371/Journal.pone.0124440.

Li Z, Krippendorff B-F, Sharma S, Walz AC, Lave T, Shah DK. Influence of molecular size on tissue distribution of antibody fragments. mAbs. 2016;8(1):113–9.

Article  PubMed  Google Scholar 

Heerington-Symes AP, Farys M, Khalili H, Brocchini S. Antibody fragments: prolonging circulating half-life special issue-antibody research. Advance Biosci Biotec. 2013;4:689–98.

Article  Google Scholar 

Scita G, DiFore PP. The endocytic matrix. Nature. 2010;463:464–73.

Article  PubMed  Google Scholar 

Steinman RM, Mellman IS, Muller WA, Cohn ZA. Endocytosis and the recycling of plasma membrane. J Cell Biol. 1983;96:1–27.

Article  PubMed  Google Scholar 

Chang H-P, Kim SJ, Shah DK. Whole-body pharmacokinetics of antibody in mice determined using enzyme-linked immunosorbent assay and derivation of tissue interstitial concentrations. J Pharmaco Sci. 2021;110:446–55.

Article  Google Scholar 

Patrick ST, Glowniak JV, Turner FE, Robbins MS, Wolfangel RG. Comparison of in vitro RBC labeling with the UltraTag RBC kit versus in vivo labeling. J Nucl Med. 1991;32(2):242–4.

PubMed  Google Scholar 

Wiig H, Kolmannskog O, Tenstad O, Bert JL. Effect of charge on interstitial distribution of albumin in rat dermis in vitro. J Physiol. 2003;550(2):505–14.

Article  PubMed  PubMed Central  Google Scholar 

Salimi-Moosavi H, Soto M, Salyers K. The use of biotin-drug-conjugates in an in-vivo PK study for investigating the impact of anti-drug antibody on the exposures. National Biotechnology Conference 2012, NBC-12–00440, Poster # W3083.

Mandikian D, Figueroa I, Oldendorp A, Rafidi H, Ulufatu S, Schweiger MG, Couch JA, Dybdal N, Joseph SB, Prabhu S, Ferl GZ, Boswell CA. Tissue physiology of cynomolgus monkeys: cross species comparison and implications for translational pharmacology. AAPS J. 2018;20(6):107.

Article  PubMed  Google Scholar 

Garg A, Balthasar JP. Physiologically-based pharmacokinetic (PBPK) model to predict IgG tissue kinetics in wild-type and FcRn-knockout mice. J Pharmacokinet Pharmacodyn. 2007;34(5):687–709.

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif