Placental microRNAs relate to early childhood growth trajectories

Barker, D. J. P. & Thornburg, K. L. Placental programming of chronic diseases, cancer and lifespan: a review. Placenta 34, 841–845 (2013).

Article  CAS  PubMed  Google Scholar 

Red-Horse, K. et al. Trophoblast differentiation during embryo implantation and formation of the maternal-fetal interface. J. Clin. Invest. 114, 744–754 (2004).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaufmann, P., Mayhew, T. M. & Charnock-Jones, D. S. Aspects of human fetoplacental vasculogenesis and angiogenesis. II. Changes during normal pregnancy. Placenta 25, 114–126 (2004).

Article  CAS  PubMed  Google Scholar 

Bartel, D. P. Metazoan MicroRNAs. Cell 173, 20–51 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Quévillon Huberdeau, M. & Simard, M. J. A guide to microRNA-mediated gene silencing. FEBS J. 286, 642–652 (2019).

Article  PubMed  Google Scholar 

Pasquinelli, A. E. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat. Rev. Genet. 13, 271–282 (2012).

Article  CAS  PubMed  Google Scholar 

Hayder, H., O’Brien, J., Nadeem, U. & Peng, C. MicroRNAs: crucial regulators of placental development. Reproduction 155, R259–R271 (2018).

Article  CAS  PubMed  Google Scholar 

Kennedy, E. M. et al. Placental microRNA expression associates with birthweight through control of adipokines: results from two independent cohorts. Epigenetics 16, 770–782 (2021).

Peng, S. et al. Genetic regulation of the placental transcriptome underlies birth weight and risk of childhood obesity. PLoS Genet. 14, e1007799 (2018).

Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).

Article  Google Scholar 

Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinforma. Oxf. Engl. 32, 3047–3048 (2016).

Article  CAS  Google Scholar 

Friedländer, M. R., Mackowiak, S. D., Li, N., Chen, W. & Rajewsky, N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 40, 37–52 (2012).

Article  PubMed  Google Scholar 

Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

Article  PubMed  PubMed Central  Google Scholar 

Griffiths-Jones, S., Saini, H. K., van Dongen, S. & Enright, A. J. miRBase: tools for microRNA genomics. Nucleic Acids Res. 36, D154–D158 (2008).

Article  CAS  PubMed  Google Scholar 

Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

Cole, T. J., Donaldson, M. D. C. & Ben-Shlomo, Y. SITAR—a useful instrument for growth curve analysis. Int. J. Epidemiol. 39, 1558–1566 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinforma. Oxf. Engl. 28, 882–883 (2012).

Article  CAS  Google Scholar 

Leek, J. T. svaseq: removing batch effects and other unwanted noise from sequencing data. Nucleic Acids Res. 42, e161 (2014).

Article  PubMed Central  Google Scholar 

Tokar, T. et al. mirDIP 4.1—integrative database of human microRNA target predictions. Nucleic Acids Res. 46, D360–D370 (2018).

Article  CAS  PubMed  Google Scholar 

Kamburov, A. et al. ConsensusPathDB: toward a more complete picture of cell biology. Nucleic Acids Res. 39, D712–D717 (2011).

Article  CAS  PubMed  Google Scholar 

Aplin, J. D. & Jones, C. J. P. Cell dynamics in human villous trophoblast. Hum. Reprod. Update 27, 904–922 (2021).

Article  CAS  PubMed  Google Scholar 

Gamage, T. K. et al. Side-population trophoblasts exhibit the differentiation potential of a trophoblast stem cell population, persist to term, and are reduced in fetal growth restriction. Stem Cell Rev. Rep. 16, 764–775 (2020).

Article  CAS  PubMed  Google Scholar 

Okae, H. et al. Derivation of human trophoblast stem cells. Cell Stem Cell 22, 50–63.e6 (2018).

Article  CAS  PubMed  Google Scholar 

Latos, P. A. & Hemberger, M. From the stem of the placental tree: trophoblast stem cells and their progeny. Development 143, 3650–3660 (2016).

Article  CAS  PubMed  Google Scholar 

Knöfler, M. et al. Human placenta and trophoblast development: key molecular mechanisms and model systems. Cell. Mol. Life Sci. 76, 3479–3496 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Gupta, S. K., Malhotra, S. S., Malik, A., Verma, S. & Chaudhary, P. Cell signaling pathways involved during invasion and syncytialization of trophoblast cells. Am. J. Reprod. Immunol. 75, 361–371 (2016).

Article  PubMed  Google Scholar 

Zhao, H.-J. et al. Bone morphogenetic protein 2 promotes human trophoblast cell invasion by upregulating N-cadherin via non-canonical SMAD2/3 signaling. Cell Death Dis. 9, 1–12 (2018).

Article  Google Scholar 

Zhao, H.-J. et al. Bone morphogenetic protein 2 promotes human trophoblast cell invasion by inducing activin A production. Endocrinology 159, 2815–2825 (2018).

Article  CAS  PubMed  Google Scholar 

Haider, S. et al. Notch1 controls development of the extravillous trophoblast lineage in the human placenta. Proc. Natl Acad. Sci. U. S. A. 113, E7710–E7719 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, Y., Yan, J., Chang, H.-M., Chen, Z.-J. & Leung, P. C. K. Roles of TGF-β superfamily proteins in extravillous trophoblast invasion. Trends Endocrinol. Metab. 32, 170–189 (2021).

Article  CAS  PubMed  Google Scholar 

Nadeem, L. et al. Nodal signals through activin receptor-like kinase 7 to inhibit trophoblast migration and invasion: implication in the pathogenesis of preeclampsia. Am. J. Pathol. 178, 1177–1189 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Myatt, L. Placental adaptive responses and fetal programming. J. Physiol. 572, 25–30 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Soares, M. J., Chakraborty, D., Kubota, K., Renaud, S. J. & Rumi, M. A. K. Adaptive mechanisms controlling uterine spiral artery remodeling during the establishment of pregnancy. Int. J. Dev. Biol. 58, 247–259 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Karachaliou, M. et al. Association of trimester-specific gestational weight gain with fetal growth, offspring obesity, and cardiometabolic traits in early childhood. Am. J. Obstet. Gynecol. 212, 502.e1–502.e14 (2015).

Article  Google Scholar 

Dai, Y. et al. MicroRNA-155 inhibits proliferation and migration of human extravillous trophoblast derived HTR-8/SVneo cells via down-regulating cyclin D1. Placenta 33, 824–829 (2012).

Article  CAS  PubMed  Google Scholar 

Ali, A., Bouma, G. J., Anthony, R. V. & Winger, Q. A. The role of LIN28-let-7-ARID3B pathway in placental development. Int. J. Mol. Sci. 21, 3637 (2020).

Article  CAS  PubMed Central  Google Scholar 

McWhorter, E. S. et al. LIN28B regulates androgen receptor in human trophoblast cells through Let-7c. Mol. Reprod. Dev. 86, 1086–1093 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Modi, B. P. et al. Expression patterns of the chromosome 21 MicroRNA cluster (miR-99a, miR-125b and let-7c) in chorioamniotic membranes. Placenta 49, 1–9 (2017).

Article  CAS  PubMed  Google Scholar 

van Rooij, J. et al. Evaluation of commonly used analysis strategies for epigenome- and transcriptome-wide association studies through replication of large-scale population studies. Genome Biol. 20, 235 (2019).

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif