Low intensity near-infrared light promotes bone regeneration via circadian clock protein cryptochrome 1

De Santis, R., Guarino, V. & Ambrosio, L. In Bone Repair Biomaterials (eds. Planell, J.A.et al.) 252–270 (Woodhead Publishing, 2009).

Campana, V. et al. Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J. Mater. Sci. Mater. Med. 25, 2445–2461 (2014).

PubMed  PubMed Central  Google Scholar 

Sun, H. et al. CD271 antibody-functionalized microspheres capable of selective recruitment of reparative endogenous stem cells for in situ bone regeneration. Biomaterials 280, 121243 (2022).

PubMed  Google Scholar 

Holt, B. D., Wright, Z. M., Arnold, A. M. & Sydlik, S. A. Graphene oxide as a scaffold for bone regeneration. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. https://doi.org/10.1002/wnan.1437 (2017).

Walmsley, G. G. et al. Nanotechnology in bone tissue engineering. Nanomed. Nanotechnol. Biol. Med. 11, 1253–1263 (2015).

Google Scholar 

Sanders, D. W. et al. Critical-sized defect in the tibia: is it critical? Results from the SPRINT trial. J. Orthop. trauma 28, 632–635 (2014).

PubMed  Google Scholar 

Van Heest, A. & Swiontkowski, M. Bone-graft substitutes. Lancet (Lond., Engl.) 353, Si28–Si29 (1999).

Google Scholar 

Gaharwar, A. K., Singh, I. & Khademhosseini, A. Engineered biomaterials for in situ tissue regeneration. Nat. Rev. Mater. 5, 686–705 (2020).

Google Scholar 

Yu, X. et al. Mechanically reinforced injectable bioactive nanocomposite hydrogels for in-situ bone regeneration. Chem. Eng. J. 433, 132799 (2022).

Google Scholar 

Cipitria, A. et al. In-situ tissue regeneration through SDF-1α driven cell recruitment and stiffness-mediated bone regeneration in a critical-sized segmental femoral defect. Acta Biomater. 60, 50–63 (2017).

PubMed  Google Scholar 

Park, I. S., Chung, P. S. & Ahn, J. C. Enhanced angiogenic effect of adipose-derived stromal cell spheroid with low-level light therapy in hind limb ischemia mice. Biomaterials 35, 9280–9289 (2014).

PubMed  Google Scholar 

Nagata, M. J. H. et al. Bone marrow aspirate combined with low-level laser therapy: a new therapeutic approach to enhance bone healing. J. Photochem. Photobiol. B Biol. 121, 6–14 (2013).

Google Scholar 

Choi, K. et al. Low-level laser therapy promotes the osteogenic potential of adipose-derived mesenchymal stem cells seeded on an acellular dermal matrix. J. Biomed. Mater. Res. B Appl. Biomater. 101, 919–928 (2013).

PubMed  Google Scholar 

Yang, C. C., Wang, J., Chen, S. C. & Hsieh, Y. L. Synergistic effects of low-level laser and mesenchymal stem cells on functional recovery in rats with crushed sciatic nerves. J. Tissue Eng. Regen. Med. 10, 120–131 (2016).

PubMed  Google Scholar 

Dos Santos, K. W., Hugo, F. N., da Cunha Rodrigues, E., Stein, A. T. & Hilgert, J. B. Effect of oral exercises and photobiomodulation therapy in the rehabilitation of patients with mandible fractures: randomized double-blind clinical trial. Lasers Med. Sci. 37, 1727–1735 (2022).

PubMed  Google Scholar 

Park, J. H. et al. Effect of photobiomodulation therapy on radiodermatitis in a mouse model: an experimental animal study. Lasers Med. Sci. 36, 843–853 (2021).

PubMed  Google Scholar 

Nelidova, D. et al. Restoring light sensitivity using tunable near-infrared sensors. Science 368, 1108–1113 (2020).

PubMed  Google Scholar 

Al-Shammari, A. M., Syhood, Y. & Al-Khafaji, A. S., Use of low-power He-Ne laser therapy to accelerate regeneration processes of injured sciatic nerve in rabbit. Egypt J. Neurol. Psychiatr. Neurosurg. https://doi.org/10.1186/s41983-018-0047-6 (2019).

Wang, C.-Z. et al. Low-level laser irradiation improves functional recovery and nerve regeneration in sciatic nerve crush rat injury model. PLoS One 9, e103348 (2014).

PubMed  PubMed Central  Google Scholar 

Salehpour, F. et al. Penetration profiles of visible and near-infrared lasers and light-emitting diode light through the head tissues in animal and human species: a review of literature. Photobiomodul. Photomed. Laser Surg. 37, 581–595 (2019).

PubMed  Google Scholar 

Metin, R., Tatli, U. & Evlice, B. Effects of low-level laser therapy on soft and hard tissue healing after endodontic surgery. Lasers Med. Sci. 33, 1699–1706 (2018).

PubMed  Google Scholar 

Ip, D. & Fu, N. Y. Can combined use of low-level lasers and hyaluronic acid injections prolong the longevity of degenerative knee joints? Clin. Interv. Aging 10, 1255–1258 (2015).

PubMed  PubMed Central  Google Scholar 

Melo Mde, O. et al. Effects of neuromuscular electrical stimulation and low-level laser therapy on the muscle architecture and functional capacity in elderly patients with knee osteoarthritis: a randomized controlled trial. Clin. Rehabil. 29, 570–580 (2015).

PubMed  Google Scholar 

Bai, J. et al. Low level laser therapy promotes bone regeneration by coupling angiogenesis and osteogenesis. Stem Cell Res. Ther. 12, 432 (2021).

PubMed  PubMed Central  Google Scholar 

Hashmi, J. T. et al. Role of low-level laser therapy in neurorehabilitation. PM R 2, S292–S305 (2010).

PubMed  PubMed Central  Google Scholar 

Xie, Y. et al. New insights into the circadian rhythm and its related diseases. Front. Physiol. 10, 682 (2019).

PubMed  PubMed Central  Google Scholar 

Haltaufderhyde, K., Ozdeslik, R. N., Wicks, N. L., Najera, J. A. & Oancea, E. Opsin expression in human epidermal skin. Photochem. Photobiol. 91, 117–123 (2015).

PubMed  Google Scholar 

Campbell, S. S. & Murphy, P. J. Extraocular circadian phototransduction in humans. Science 279, 396–399 (1998).

PubMed  Google Scholar 

Dibner, C., Schibler, U. & Albrecht, U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu. Rev. Physiol. 72, 517–549 (2010).

PubMed  Google Scholar 

Xu, C. et al. Circadian clock regulates bone resorption in mice. J. Bone Miner. Res. Res. 31, 1344–1355 (2016).

Google Scholar 

Lieben, L. Bone: the circadian clock controls bone remodelling. Nat. Rev. Rheumatol. 12, 132 (2016).

PubMed  Google Scholar 

He, Y., Chen, Y., Zhao, Q. & Tan, Z. Roles of brain and muscle ARNT-like 1 and Wnt antagonist Dkk1 during osteogenesis of bone marrow stromal cells. Cell Prolif. 46, 644–653 (2013).

PubMed  PubMed Central  Google Scholar 

Guntur, A. R. et al. An essential role for the circadian-regulated gene nocturnin in osteogenesis: the importance of local timekeeping in skeletal homeostasis. Ann. N. Y. Acad. Sci. 1237, 58–63 (2011).

PubMed  PubMed Central  Google Scholar 

McElderry, J. D. et al. Tracking circadian rhythms of bone mineral deposition in murine calvarial organ cultures. J. Bone Miner. Res. 28, 1846–1854 (2013).

PubMed  Google Scholar 

Yu, S. et al. Circadian BMAL1 regulates mandibular condyle development by hedgehog pathway. Cell Prolif. 53, e12727 (2020).

PubMed  Google Scholar 

Zhou, X. et al. BMAL1 deficiency promotes skeletal mandibular hypoplasia via OPG downregulation. Cell Prolif. 51, e12470 (2018).

PubMed  PubMed Central  Google Scholar 

Zhao, J. et al. BMAL1 deficiency contributes to mandibular dysplasia by upregulating MMP3. Stem Cell Rep. 10, 180–195 (2018).

Google Scholar 

Bass, J. & Lazar, M. A. Circadian time signatures of fitness and disease. Science 354, 994–999 (2016).

PubMed  Google Scholar 

Busino, L. et al. SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Science 316, 900–904 (2007).

PubMed  Google Scholar 

Hirano, A., Braas, D., Fu, Y. H. & Ptáček, L. J. FAD regulates CRYPTOCHROME protein stability and circadian clock in mice. Cell Rep. 19, 255–266 (2017).

PubMed  PubMed Central  Google Scholar 

Hirota, T. et al. Identification of small molecule activators of cryptochrome. Science 337, 1094–1097 (2012).

PubMed  PubMed Central  Google Scholar 

Ukon, Y. et al. Prostaglandin EP4 selective agonist AKDS001 Enhances New Bone Formation by Minimodeling in a Rat Heterotopic Xenograft Model of Human Bone. Front. Bioeng. Biotechnol. 10, 845716 (2022).

PubMed  PubMed Central  Google Scholar 

Mao, W. et al. Phloretin ameliorates diabetes-induced endothelial injury through AMPK-dependent anti-EndMT pathway. Pharmacol. Res. 179, 106205 (2022).

PubMed  Google Scholar 

Wu, Z. et al. Regulating macrophage polarization in high glucose microenvironment using lithium-modified bioglass-hydrogel for diabetic bone regeneration. Adv. Healthcare Mater. 11, e2200298 (2022).

Yu, L. N. et al. Direct modulation of hepatocyte hepcidin signaling by iron. World J. Hepatol. 13, 1378–1393 (2021).

PubMed  PubMed Central  Google Scholar 

Kim, Y. J., Park, W. R., Choi, B., Choi, H. S. & Kim, D. K. Epigallocatechin-3-gallate suppresses BMP-6-mediated SMAD1/5/8 transactivation of hepcidin gene by inducing SMILE in hepatocytes. Antioxidants (Basel) 10, 1590 (2021).

Katakawa, Y., Funaba, M. & Murakami, M. Smad8/9 is regulated through the BMP pathway. J. Cell. Biochem. 117, 1788–1796 (2016).

PubMed  Google Scholar 

Nemoto, E. et al. Wnt5a signaling is a substantial constituent in bone morphogenetic protein-2-mediated osteoblastogenesis. Biochemical Biophys. Res. Commun. 422, 627–632 (2012).

Google Scholar 

Stolzing, A., Jones, E., McGonagle, D. & Scutt, A. Age-related changes in human bone marrow-derived mesenchymal stem cells: Consequences for cell therapies. Mechanisms Age. Dev. 129, 163–173 (2008).

Google Scholar 

Mohamad, S. A., Milward, M. R., Hadis, M. A., Kuehne, S. A. & Cooper, P. R. Photobiomodulation of mineralisation in mesenchymal stem cells. Photochem. Photobiol. Sci. 20, 699–714 (2021).

PubMed  Google Scholar 

Okuno, T. Thermal effect of visible light and infra-red radiation (i.r.-A, i.r.-B and i.r.-C) on the eye: a study of infra-red cataract based on a model. Ann. Occup. Hyg. 38, 351–359 (1994).

PubMed  Google Scholar 

Cho, S. et al. Effects of infrared radiation and heat on human skin aging in vivo. J. Investigative Dermatol. Symp . Proc. 14, 15–19 (2009).

Google Scholar 

Glavaš, H., Vukobratović, M. & Keser, T. Infrared thermography as control of handheld IPL device for home-use. J. Cosmet. Laser Ther. 20, 269–277 (2018).

PubMed  Google Scholar 

Huang, Y. Y., Sharma, S. K., Carroll, J. & Hamblin, M. R. Biphasic dose response in low level light therapy—an update. Dose Response 9, 602–618 (2011).

PubMed  PubMed Central  Google Scholar 

Tan, L. et al. Rapid biofilm eradication on bone implants using red phosphorus and near-infrared light. Adv. Mater. 30, e1801808 (2018).

PubMed  Google Scholar 

Chen, Q. et al. Photothermal therapy promotes tumor infiltration and antitumor activity of CAR T cells. Adv. Mater. 31, 1900192 (2019).

Google Scholar 

Ma, L. et al. A novel photothermally controlled multifunctional scaffold for clinical treatment of osteosarcoma and tissue regeneration. Mater. Today 36, 48–62 (2020).

Google Scholar 

Chow, R. W. & Vermot, J. The rise of photoresp

留言 (0)

沒有登入
gif