Prognostic and clinicopathological value of Slug protein expression in breast cancer: a systematic review and meta-analysis

Iacoviello L, Bonaccio M, de Gaetano G, Donati MB. Epidemiology of breast cancer, a paradigm of the “common soil” hypothesis. Semin Cancer Biol. 2020;72:4–10.

PubMed  Google Scholar 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

PubMed  Google Scholar 

Britt KL, Cuzick J, Phillips KA. Key steps for effective breast cancer prevention. Nat Rev Cancer. 2020;20:417–36.

CAS  PubMed  Google Scholar 

Caparica R, Brandão M, Piccart M. Systemic treatment of patients with early breast cancer: recent updates and state of the art. Breast. 2019;48(Suppl 1):S7–s20.

PubMed  Google Scholar 

Knappskog S, Lønning PE. P53 and its molecular basis to chemoresistance in breast cancer. Expert Opin Ther Targets. 2012;16(Suppl 1):S23–30.

CAS  PubMed  Google Scholar 

Barrios CH, Reinert T. Open questions and controversies in the systemic treatment of breast cancer. Curr Opin Oncol. 2021;33:591–6.

CAS  PubMed  Google Scholar 

Zhang M, Sun H, Zhao S, Wang Y, Pu H, Wang Y, et al. Expression of PD-L1 and prognosis in breast cancer: a meta-analysis. Oncotarget. 2017;8:31347–54.

PubMed  PubMed Central  Google Scholar 

Phillips S, Kuperwasser C. SLUG: Critical regulator of epithelial cell identity in breast development and cancer. Cell Adhes Migr. 2014;8:578–87.

Google Scholar 

Shih JY, Yang PC. The EMT regulator slug and lung carcinogenesis. Carcinogenesis. 2011;32:1299–304.

CAS  PubMed  Google Scholar 

Alves CC, Carneiro F, Hoefler H, Becker KF. Role of the epithelial-mesenchymal transition regulator Slug in primary human cancers. Front Biosci (Landmark Ed). 2009;14:3035–50.

PubMed  Google Scholar 

Lee YJ, Park JH, Oh SM. Activation of NF-κB by TOPK upregulates Snail/Slug expression in TGF-β1 signaling to induce epithelial-mesenchymal transition and invasion of breast cancer cells. Biochem Biophys Res Commun. 2020;530:122–9.

CAS  PubMed  Google Scholar 

Jiang Z, Pei L, Xie Y, Ye Q, Liang X, Ye Y, et al. Ruyiping formula inhibits metastasis via the microRNA-134-SLUG axis in breast cancer. BMC Complement Med Ther. 2021;21:191.

CAS  PubMed  PubMed Central  Google Scholar 

Pan Y, Li J, Zhang Y, Wang N, Liang H, Liu Y, et al. Slug-upregulated miR-221 promotes breast cancer progression through suppressing E-cadherin expression. Sci Rep. 2016;6:25798.

CAS  PubMed  PubMed Central  Google Scholar 

Chen Z, Yan X, Li K, Ling Y, Kang H. Stromal fibroblast-derived MFAP5 promotes the invasion and migration of breast cancer cells via Notch1/slug signaling. Clin Transl Oncol. 2020;22:522–31.

CAS  PubMed  Google Scholar 

Zhao Z, Sun YS, Chen W, Lv LX, Li YQ. Hispolon inhibits breast cancer cell migration by reversal of epithelial-to-mesenchymal transition via suppressing the ROS/ERK/Slug/E-cadherin pathway. Oncol Rep. 2016;35:896–904.

CAS  PubMed  Google Scholar 

Fazilaty H, Gardaneh M, Akbari P, Zekri A, Behnam B. SLUG and SOX9 Cooperatively Regulate Tumor Initiating Niche Factors in Breast Cancer. Cancer Microenviron. 2016;9:71–4.

CAS  PubMed  Google Scholar 

Joshi T, Elias D, Stenvang J, Alves CL, Teng F, Lyng MB, et al. Integrative analysis of miRNA and gene expression reveals regulatory networks in tamoxifen-resistant breast cancer. Oncotarget. 2016;7:57239–53.

PubMed  PubMed Central  Google Scholar 

Shen CJ, Kuo YL, Chen CC, Chen MJ, Cheng YM. MMP1 expression is activated by Slug and enhances multi-drug resistance (MDR) in breast cancer. PLoS One. 2017;12:e0174487.

PubMed  PubMed Central  Google Scholar 

Li D, Li L, Yang W, Chen L, Chen X, Wang Q, et al. Prognostic values of SNAI family members in breast cancer patients. Ann Transl Med. 2020;8:922.

CAS  PubMed  PubMed Central  Google Scholar 

Grzegrzolka J, Biala M, Wojtyra P, Kobierzycki C, Olbromski M, Gomulkiewicz A, et al. Expression of EMT Markers SLUG and TWIST in Breast Cancer. Anticancer Res. 2015;35:3961–8.

CAS  PubMed  Google Scholar 

Wan G, Tian L, Yu Y, Li F, Wang X, Li C, et al. Overexpression of Pofut1 and activated Notch1 may be associated with poor prognosis in breast cancer. Biochem Biophys Res Commun. 2017;491:104–11.

CAS  PubMed  Google Scholar 

Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60.

Article  PubMed  PubMed Central  Google Scholar 

Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535.

PubMed  PubMed Central  Google Scholar 

Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25:603–5.

PubMed  Google Scholar 

Tierney JF, Stewart LA, Ghersi D, Burdett S, Sydes MR. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials. 2007;8:16.

PubMed  PubMed Central  Google Scholar 

DerSimonian R, Laird N. Meta-analysis in clinical trials revisited. Contemp Clin Trials. 2015;45:139–45.

PubMed  PubMed Central  Google Scholar 

Wu Q, Wang J, Liu Y, Gong X. Epithelial cell adhesion molecule and epithelial-mesenchymal transition are associated with vasculogenic mimicry, poor prognosis, and metastasis of triple negative breast cancer. Int J Clin Exp Pathol. 2019;12:1678–89.

CAS  PubMed  PubMed Central  Google Scholar 

Gu S, Chu C, Chen W, Ren H, Cao Y, Li X, et al. Prognostic value of epithelial-mesenchymal transition related genes: SLUG and QKI in breast cancer patients. Int J Clin Exp Pathol. 2019;12:2009–21.

CAS  PubMed  PubMed Central  Google Scholar 

Prasad CP, Rath G, Mathur S, Bhatnagar D, Parshad R, Ralhan R. Expression analysis of E-cadherin, Slug and GSK3beta in invasive ductal carcinoma of breast. BMC Cancer. 2009;9:325.

PubMed  PubMed Central  Google Scholar 

Cao YW, Wan GX, Sun JP, Cui XB, Hu JM, Liang WH, et al: Implications of the Notch1-Snail/Slug-epithelial to mesenchymal transition axis for lymph node metastasis in infiltrating ductal carcinoma. 2015.

Google Scholar 

Liu T, Zhang X, Shang M, Zhang Y, Xia B, Niu M, et al: Dysregulated expression of Slug, vimentin, and E-cadherin correlates with poor clinical outcome in patients with basal-like breast cancer. 2013.

Google Scholar 

Wu ZQ, Li XY, Hu CY, Ford M, Kleer CG, Weiss SJ. Canonical Wnt signaling regulates Slug activity and links epithelial-mesenchymal transition with epigenetic Breast Cancer 1, Early Onset (BRCA1) repression. Proc Natl Acad Sci U S A. 2012;109:16654–9.

CAS  PubMed  PubMed Central  Google Scholar 

Ito M, Shien T, Omori M, Mizoo T, Iwamoto T, Nogami T, et al. Evaluation of aldehyde dehydrogenase 1 and transcription factors in both primary breast cancer and axillary lymph node metastases as a prognostic factor. Breast Cancer. 2016;23:437–44.

PubMed  Google Scholar 

Liu A, Sun X, Xu J, Xuan Y, Zhao Y, Qiu T, et al. Relevance and prognostic ability of Twist, Slug and tumor spread through air spaces in lung adenocarcinoma. Cancer Med. 2020;9:1986–98.

CAS  PubMed  PubMed Central  Google Scholar 

Song H, Ci H, Xu J, Xu Z, Zhang Y, Wang Y, et al. Vasculogenic mimicry and expression of slug and vimentin correlate with metastasis and prognosis in non-small cell lung cancer. Int J Clin Exp Pathol. 2018;11:2749–58.

PubMed  PubMed Central  Google Scholar 

Chang L, Hu Y, Fu Y, Zhou T, You J, Du J, et al. Targeting slug-mediated non-canonical activation of c-Met to overcome chemo-resistance in metastatic ovarian cancer cells. Acta Pharm Sin B. 2019;9:484–95.

PubMed  PubMed Central  Google Scholar 

Gu A, Jie Y, Yao Q, Zhang Y, Mingyan E. Slug Is Associated With Tumor Metastasis and Angiogenesis in Ovarian Cancer. Reprod Sci. 2017;24:291–9.

CAS  PubMed  Google Scholar 

Toiyama Y, Yasuda H, Saigusa S, Tanaka K, Inoue Y, Goel A, et al. Increased expression of Slug and Vimentin as novel predictive biomarkers for lymph node metastasis and poor prognosis in colorectal cancer. Carcinogenesis. 2013;34:2548–57.

CAS  PubMed  Google Scholar 

Huang C, Zhang P, Zhang D, Weng X. The prognostic implication of slug in all tumour patients - a systematic meta-analysis. Eur J Clin Investig. 2016;46:398–407.

CAS  Google Scholar 

Ramaswamy S, Ross KN, Lander ES, Golub TR. A molecular signature of metastasis in primary solid tumors. Nat Genet. 2003;33:49–54.

CAS  PubMed  Google Scholar 

Shao S, Zhao X, Zhang X, Luo M, Zuo X, Huang S, et al. Notch1 signaling regulates the epithelial-mesenchymal transition and invasion of breast cancer in a Slug-dependent manner. Mol Cancer. 2015;14:28.

CAS  PubMed  PubMed Central  Google Scholar 

Zhou L, Wang D, Sheng D, Xu J, Chen W, Qin Y, et al. NOTCH4 maintains quiescent mesenchymal-like breast cancer stem cells via transcriptionally activating SLUG and GAS1 in triple-negative breast cancer. Theranostics. 2020;10:2405–21.

CAS  PubMed  PubMed Central  Google Scholar 

Liu YN, Yin JJ, Abou-Kheir W, Hynes PG, Casey OM, Fang L, et al. MiR-1 and miR-200 inhibit EMT via Slug-dependent and tumorigenesis via Slug-independent mechanisms. Oncogene. 2013;32:296–306.

CAS  PubMed  Google Scholar 

Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178–96.

CAS 

留言 (0)

沒有登入
gif