Identification of the common neurobiological process disturbed in genetic and non-genetic models for autism spectrum disorders

American Psychiatric Association (2013), American Psychiatric Association. DSM-5 Task Force. Diagnostic and statistical manual of mental disorders: DSM-5. American Psychiatric Association. p 947

Nakanishi M, Anderson MP, Takumi T (2019) Recent genetic and functional insights in autism spectrum disorder. Curr Opin Neurol 32(4):627–634

Article  PubMed  PubMed Central  Google Scholar 

Masini E, Loi E, Vega-Benedetti AF, Carta M, Doneddu G, Fadda R et al (2020) An overview of the main genetic, epigenetic and environmental factors involved in autism spectrum disorder focusing on synaptic activity. Int J Mol Sci 21(21):1–22

Article  Google Scholar 

Grabrucker AM (2013) Environmental factors in autism. Front Psychiatry 18(3):118. https://doi.org/10.3389/fpsyt.2012.00118

Article  Google Scholar 

Sierra-Arregui T, Llorente J, Giménez Minguez P, Tønnesen J, Peñagarikano O (2020) Neurobiological mechanisms of autism spectrum disorder and epilepsy, insights from animal models. Neuroscience 445:69–82

Article  CAS  PubMed  Google Scholar 

Möhrle D, Fernández M, Peñagarikano O, Frick A, Allman B, Schmid S (2020) What we can learn from a genetic rodent model about autism. Neurosci Biobehav Rev 109:29–53

Article  PubMed  Google Scholar 

Won H, Mah W, Kim E (2013) Autism spectrum disorder causes, mechanisms, and treatments: focus on neuronal synapses. Front Mol Neurosci 5(6):19. https://doi.org/10.3389/fnmol.2013.00019 (PMID: 23935565; PMCID: PMC3733014)

Article  Google Scholar 

Brielmaier J, Matteson PG, Silverman JL, Senerth JM, Kelly S, Genestine M et al (2012) Autism-relevant social abnormalities and cognitive deficits in engrailed-2 knockout mice. PLoS One 7(7):e40914. https://doi.org/10.1371/journal.pone.0040914

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheh MA, Millonig JH, Roselli LM, Ming X, Jacobsen E, Kamdar S et al (2006) En2 knockout mice display neurobehavioral and neurochemical alterations relevant to autism spectrum disorder. Brain Res 1116(1):166–176. https://doi.org/10.1016/j.brainres.2006.07.086

Article  CAS  PubMed  Google Scholar 

Horev G, Ellegood J, Lerch JP, Son YEE, Muthuswamy L, Vogel H et al (2011) Dosage-dependent phenotypes in models of 16p11.2 lesions found in autism. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1114042108

Article  PubMed  PubMed Central  Google Scholar 

Portmann T, Yang M, Mao R, Panagiotakos G, Ellegood J, Dolen G et al (2014) Behavioral abnormalities and circuit defects in the basal ganglia of a mouse model of 16p11.2 deletion syndrome. Cell Rep 7(4):1079–92. https://doi.org/10.1016/j.celrep.2014.03.036

Article  CAS  Google Scholar 

Jiang Y, Ehlers M (2013) Modeling Autism by SHANK gene mutations in mice. Neuron 78(1):8–27. https://doi.org/10.1016/j.neuron.2013.03.016

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schmeisser MJ, Ey E, Wegener S, Bockmann J, Stempel AV, Kuebler A et al (2012) Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2. Nature 486(7402):256–260. https://doi.org/10.1038/nature11015

Article  CAS  PubMed  Google Scholar 

Kazdoba TM, Leach PT, Silverman JL, Crawley JN (2014) Modeling fragile X syndrome in the Fmr1 knockout mouse. Intractable Rare Dis Res 3(4):118–133. https://doi.org/10.5582/irdr.2014.01024

Article  PubMed  PubMed Central  Google Scholar 

Liu J, Nyholt DR, Magnussen P, Parano E, Pavone P, Geschwind D et al (2001) A genomewide screen for autism susceptibility loci the autism genetic resource exchange consortium. Am J Hum Genet 69:327–340. https://doi.org/10.1086/321980

Article  CAS  PubMed  PubMed Central  Google Scholar 

Loke YJ, Hannan AJ, Craig JM (2015) The role of epigenetic change in autism spectrum disorders. Front Neurol 6:107. https://doi.org/10.3389/fneur.2015.00107

Article  PubMed  PubMed Central  Google Scholar 

Rein B, Yan Z (2020) 16p112 Copy number variations and neurodevelopmental disorders. Trends Neurosci 43(11):886–901. https://doi.org/10.1016/j.tins.2020.09.001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leblond CS, Nava C, Polge A, Gauthier J, Huguet G, Lumbroso S et al (2014) Meta-analysis of SHANK mutations in autism spectrum disorders: a gradient of severity in cognitive impairments. PLoS Genet. https://doi.org/10.1371/journal.pgen.1004580

Article  PubMed  PubMed Central  Google Scholar 

Grabrucker AM, Schmeisser MJ, Schoen M, Boeckers TM (2011) Postsynaptic ProSAP/Shank scaffolds in the cross-hair of synaptopathies. Trends Cell Biol 21(10):594–603. https://doi.org/10.1016/j.tcb.2011.07.003

Article  CAS  PubMed  Google Scholar 

Schmeisser MJ (2015) Translational neurobiology in Shank mutant mice—model systems for neuropsychiatric disorders. Ann Anat 200:115–117. https://doi.org/10.1016/j.aanat.2015.03.006

Article  PubMed  Google Scholar 

Kaufmann WE, Kidd SA, Andrews HF, Budimirovic DB, Esler A, Haas-Givler B, Stackhouse T, Riley C, Peacock G, Sherman SL, Brown WT, Berry-Kravis E (2017) Autism spectrum disorder in fragile X syndrome: cooccurring conditions and current treatment. Pediatrics 139(Suppl 3):S194–S206. https://doi.org/10.1542/peds.2016-1159F

Article  PubMed  Google Scholar 

Bernardet M, Crusio WE (2006) Fmr1 KO mice as a possible model of autistic features. Sci World J 6:1164–1176. https://doi.org/10.1100/tsw.2006.220

Article  CAS  Google Scholar 

Chaliha D, Albrecht M, Vaccarezza M, Takechi R, Lam V, Al-Salami H et al (2020) A systematic review of the valproic-acid-induced rodent model of autism. Dev Neurosci 42(1):12–48. https://doi.org/10.1159/000509109

Article  CAS  PubMed  Google Scholar 

Careaga M, Murai T, Bauman MD (2017) Maternal immune activation and autism spectrum disorder: from rodents to nonhuman and human primates. Biol Psychiatry 81(5):391–401. https://doi.org/10.1016/j.biopsych.2016.10.020

Article  CAS  PubMed  Google Scholar 

Grabrucker S, Boeckers TM, Grabrucker AM (2016) Gender dependent evaluation of autism like behavior in mice exposed to prenatal zinc deficiency. Front Behav Neurosci 10:37. https://doi.org/10.3389/fnbeh.2016.00037

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grabrucker S, Jannetti L, Eckert M, Gaub S, Chhabra R, Pfaender S et al (2014) Zinc deficiency dysregulates the synaptic ProSAP/Shank scaffold and might contribute to autism spectrum disorders. Brain 137(1):137–152. https://doi.org/10.1093/brain/awt303

Article  PubMed  Google Scholar 

Grabrucker S, Haderspeck JC, Sauer AK, Kittelberger N, Asoglu H, Abaei A et al (2018) Brain lateralization in mice is associated with zinc signaling and altered in prenatal zinc deficient mice that display features of autism spectrum disorder. Front Mol Neurosci 10:450. https://doi.org/10.3389/fnmol.2017.00450

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cezar LC, Kirsten TB, da Fonseca CCN, de Lima APN, Bernardi MM, Felicio LF (2018) Zinc as a therapy in a rat model of autism prenatally induced by valproic acid. Prog Neuro-Psychopharmacology Biol Psychiatry 84:173–180. https://doi.org/10.1016/j.pnpbp.2018.02.008

Article  CAS  Google Scholar 

Grabrucker AM (2020) Biometals in Autism Spectrum. Academic Press/Elsevier, Amsterdam. https://doi.org/10.1016/C2019-0-01808-0

Book  Google Scholar 

Sgadò P, Provenzano G, Dassi E, Adami V, Zunino G, Genovesi S et al (2013) Transcriptome profiling in engrailed-2 mutant mice reveals common molecular pathways associated with autism spectrum disorders. Mol Autism 4(1):51. https://doi.org/10.1186/2040-2392-4-51

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lim CS, Kim H, Yu NK, Kang SJ, Kim TH, Ko HG et al (2017) Enhancing inhibitory synaptic function reverses spatial memory deficits in Shank2 mutant mice. Neuropharmacology 112:104–112. https://doi.org/10.1016/j.neuropharm.2016.08.016

Article  CAS  PubMed  Google Scholar 

Reim D, Distler U, Halbedl S, Verpelli C, Sala C, Bockmann J et al (2017) Proteomic analysis of post-synaptic density fractions from Shank3 mutant mice reveals brain region specific changes relevant to autism spectrum disorder. Front Mol Neurosci 10:26. https://doi.org/10.3389/fnmol.2017.00026

Article  CAS  PubMed  PubMed Central  Google Scholar 

Prilutsky D, Kho AT, Palmer NP, Bhakar AL, Smedemark-Margulies N, Kong SW et al (2015) Gene expression analysis in Fmr1KO mice identifies an immunological signature in brain tissue and mGluR5-related signaling in primary neuronal cultures. Mol Autism 6:66

Article  PubMed  PubMed Central  Google Scholar 

Lanz TA, Guilmette E, Gosink MM, Fischer JE, Fitzgerald LW, Stephenson DT et al (2013) Transcriptomic analysis of genetically defined autism candidate genes reveals common mechanisms of action. Mol Autism 4(1):45. https://doi.org/10.1186/2040-2392-4-45

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T et al (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13(9):731–740. https://doi.org/10.1038/nmeth.3901

Article  CAS  PubMed  Google Scholar 

Eisenberg E, Levanon EY (2013) Human housekeeping genes, revisited. Trends Genet 29(10):569–574. https://doi.org/10.1016/j.tig.2013.05.010

Article  CAS  PubMed  Google Scholar 

Smith TC, Frank E (2016) Introducing machine learning concepts with WEKA. In: Mathé E, Davis S (eds) Stat

留言 (0)

沒有登入
gif