Functional diversity: update of the posttranslational modification of Epstein–Barr virus coding proteins

Epstein MA, Henle G, Achong BG et al (1965) Morphological and biological studies on a virus in cultured lymphoblasts from burkitt’s lymphoma. J Exp Med 121:761–770. https://doi.org/10.1084/jem.121.5.761

Article  CAS  PubMed  PubMed Central  Google Scholar 

Epstein MA, Achong BG, Barr YM (1964) Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet 283:702–703. https://doi.org/10.1016/s0140-6736(64)91524-7

Article  Google Scholar 

Feederle R, Klinke O, Kutikhin A et al (2015) Epstein–Barr virus: from the detection of sequence polymorphisms to the recognition of viral types. Springer International Publishing, Berlin

Google Scholar 

Masud HMA, Watanabe T, Yoshida M et al (2017) Epstein–Barr virus BKRF4 gene product is required for efficient progeny production. J Virol 91:e00975-e01917. https://doi.org/10.1128/JVI.00975-17

Article  PubMed  PubMed Central  Google Scholar 

Houen G, Trier NH (2020) Epstein–Barr virus and systemic autoimmune diseases. Front Immunol 11:587380. https://doi.org/10.3389/fimmu.2020.587380

Article  CAS  PubMed  Google Scholar 

Chang PC, Campbell M, Robertson ES (2016) Human oncogenic herpesvirus and post-translational modifications—phosphorylation and SUMOylation. Front Microbiol 7:962. https://doi.org/10.3389/fmicb.2016.00962

Article  PubMed  PubMed Central  Google Scholar 

Wang Y, Banerjee S, Ding L et al (2017) The regulatory role of protein phosphorylation in human gammaherpesvirus associated cancers. Virol Sin 32:357–368. https://doi.org/10.1007/s12250-017-4081-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Y, Wang Y, Zhu C et al (2020) Role of SUMOylation in human oncogenic herpesvirus infection. Virus Res 283:197962. https://doi.org/10.1016/j.virusres.2020.197962

Article  CAS  PubMed  Google Scholar 

Pei Y, Robertson ES (2022) The central role of the ubiquitin-proteasome system in EBV-mediated oncogenesis. Cancers. https://doi.org/10.3390/cancers14030611

Article  PubMed  PubMed Central  Google Scholar 

Bagdonaite I, Nordén R, Joshi HJ et al (2016) Global mapping of O-glycosylation of varicella zoster virus, human cytomegalovirus, and Epstein–Barr virus. J Biol Chem 291:12014–12028. https://doi.org/10.1074/jbc.M116.721746

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu ZX, Cai YD, Guo XJ et al (2015) Post-translational modification (PTM) bioinformatics in China: progresses and perspectives. Hereditas 37:621–634. https://doi.org/10.16288/j.yczz.15-003

Article  CAS  PubMed  Google Scholar 

Smith RF, Smith TF (1989) Identification of new protein kinase-related genes in three herpesviruses, herpes simplex virus, varicella-zoster virus, and Epstein–Barr virus. J Virol 63:450–455. https://doi.org/10.1128/jvi.63.1.450-455.1989

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kato K, Kawaguchi Y, Tanaka M et al (2001) Epstein–Barr virus-encoded protein kinase BGLF4 mediates hyperphosphorylation of cellular elongation factor 1delta (EF-1delta): EF-1delta is universally modified by conserved protein kinases of herpesviruses in mammalian cells. J Gen Virol 82:1457–1463. https://doi.org/10.1099/0022-1317-82-6-1457

Article  CAS  PubMed  Google Scholar 

Gershburg E, Marschall M, Hong K et al (2004) Expression and localization of the Epstein–Barr virus-encoded protein kinase. J Virol 78:12140–12146. https://doi.org/10.1128/JVI.78.22.12140-12146.2004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Asai R, Kato A, Kato K et al (2006) Epstein–Barr virus protein kinase BGLF4 is a virion tegument protein that dissociates from virions in a phosphorylation-dependent process and phosphorylates the viral immediate-early protein BZLF1. J Virol 80:5125–5134. https://doi.org/10.1128/JVI.02674-05

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen MR, Chang SJ, Huang H et al (2000) A protein kinase activity associated with Epstein–Barr virus BGLF4 phosphorylates the viral early antigen EA-D in vitro. J Virol 74:3093–3104. https://doi.org/10.1128/jvi.74.7.3093-3104.2000

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kitamura R, Sekimoto T, Ito S et al (2006) Nuclear import of Epstein–Barr virus nuclear antigen 1 mediated by NPI-1 (Importin alpha5) is up- and down-regulated by phosphorylation of the nuclear localization signal for which Lys379 and Arg380 are essential. J Virol 80:1979–1991. https://doi.org/10.1128/JVI.80.4.1979-1991.2006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reedman BM, Klein G (1973) Cellular localization of an Epstein–Barr virus (EBV)-associated complement-fixing antigen in producer and non-producer lymphoblastoid cell lines. Int J Cancer 11:499–520. https://doi.org/10.1002/ijc.2910110302

Article  CAS  PubMed  Google Scholar 

Yates JL, Warren N, Sugden B (1985) Stable replication of plasmids derived from Epstein–Barr virus in various mammalian cells. Nature 313:812–815. https://doi.org/10.1038/313812a0

Article  CAS  PubMed  Google Scholar 

Shire K, Kapoor P, Jiang K et al (2006) Regulation of the EBNA1 Epstein–Barr virus protein by serine phosphorylation and arginine methylation. J Virol 80:5261–5272. https://doi.org/10.1128/JVI.02682-05

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hung SC, Kang MS, Kieff E (2001) Maintenance of Epstein–Barr virus (EBV) oriP-based episomes requires EBV-encoded nuclear antigen-1 chromosome-binding domains, which can be replaced by high-mobility group-I or histone H1. Proc Natl Acad Sci U S A 98:1865–1870. https://doi.org/10.1073/pnas.98.4.1865

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kanda T, Otter M, Wahl GM (2001) Coupling of mitotic chromosome tethering and replication competence in Epstein–barr virus-based plasmids. Mol Cell Biol 21:3576–3588. https://doi.org/10.1128/mcb.21.10.3576-3588.2001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kapoor P, Lavoie BD, Frappier L (2005) EBP2 plays a key role in Epstein–Barr virus mitotic segregation and is regulated by aurora family kinases. Mol Cell Biol 25:4934–4945. https://doi.org/10.1128/mcb.25.12.4934-4945.2005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu H, Ceccarelli DF, Frappier L (2000) The DNA segregation mechanism of Epstein–Barr virus nuclear antigen 1. EMBO Rep 1:140–144. https://doi.org/10.1093/embo-reports/kvd026

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gahn TA, Sugden B (1995) An EBNA-1-dependent enhancer acts from a distance of 10 kilobase pairs to increase expression of the Epstein–Barr virus LMP gene. J Virol 69:2633–2636. https://doi.org/10.1128/jvi.69.4.2633-2636.1995

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reisman D, Sugden B (1986) trans activation of an Epstein–Barr viral transcriptional enhancer by the Epstein–Barr viral nuclear antigen 1. Mol Cell Biol 6:3838–3846. https://doi.org/10.1128/mcb.6.11.3838-3846.1986

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saridakis V, Sheng Y, Sarkari F et al (2005) Structure of the p53 binding domain of HAUSP/USP7 bound to Epstein–Barr nuclear antigen 1 implications for EBV-mediated immortalization. Mol Cell 18:25–36. https://doi.org/10.1016/j.molcel.2005.02.029

Article  CAS  PubMed  Google Scholar 

Sivachandran N, Cao JY, Frappier L (2010) Epstein–Barr virus nuclear antigen 1 Hijacks the host kinase CK2 to disrupt PML nuclear bodies. J Virol 84:11113–11123. https://doi.org/10.1128/JVI.01183-10

Article  CAS  PubMed  PubMed Central  Google Scholar 

Noh KW, Park J, Joo EH et al (2016) ERK2 phosphorylation of EBNA1 serine 383 residue is important for EBNA1-dependent transactivation. Oncotarget 7:25507–25515. https://doi.org/10.18632/oncotarget.8177

Article  PubMed  PubMed Central  Google Scholar 

Hearing JC, Levine AJ (1985) The Epstein–Barr virus nuclear antigen (BamHI K antigen) is a single-stranded DNA binding phosphoprotein. Virology 145:105–116. https://doi.org/10.1016/0042-6822(85)90205-3

Article  CAS  PubMed  Google Scholar 

Nakada R, Hirano H, Matsuura Y (2017) Structural basis for the regulation of nuclear import of Epstein–Barr virus nuclear antigen 1 (EBNA1) by phosphorylation of the nuclear localization signal. Biochem Biophys Res Commun 484:113–117. https://doi.org/10.1016/j.bbrc.2017.01.063

Article  CAS  PubMed  Google Scholar 

Kang M-S, Lee EK, Soni V et al (2011) Roscovitine inhibits EBNA1 serine 393 phosphorylation, nuclear localization, transcription, and episome maintenance. J Virol 85:2859–2868. https://doi.org/10.1128/JVI.01628-10

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao JY, Shire K, Landry C et al (2014) Identification of a novel protein interaction motif in the regulatory subunit of casein kinase 2. Mol Cell Biol 34:246–258. https://doi.org/10.1128/MCB.00968-13

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif