Shaping bacterial gene expression by physiological and proteome allocation constraints

Neidhardt, F. C., Ingraham, J. L. & Schaechter, M. Physiology of the Bacterial Cell: A Molecular Approach (Sinauer Associates, 1990).

Bervoets, I. & Charlier, D. Diversity, versatility and complexity of bacterial gene regulation mechanisms: opportunities and drawbacks for applications in synthetic biology. FEMS Microbiol. Rev. 43, 304–339 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

Dorman, C. J. Structure and Function of the Bacterial Genome (Wiley-Blackwell, 2020).

Henkin, T. M. & Peters, J. E. Snyder & Champness Molecular Genetics of Bacteria. 5 edn (ASM Press, 2020).

Phillips, R. The Molecular Switch: Signaling and Allostery (Princeton University Press, 2020).

van den Berg, J., Boersma, A. J. & Poolman, B. Microorganisms maintain crowding homeostasis. Nat. Rev. Microbiol. 15, 309–318 (2017).

PubMed  Google Scholar 

Zhang, G. et al. Global and local depletion of ternary complex limits translational elongation. Nucleic Acids Res. 38, 4778–4787 (2010).

CAS  PubMed  PubMed Central  Google Scholar 

Klumpp, S., Scott, M., Pedersen, S. & Hwa, T. Molecular crowding limits translation and cell growth. Proc. Natl Acad. Sci. USA 110, 16754–16759 (2013).

CAS  PubMed  PubMed Central  Google Scholar 

Dai, X. et al. Slowdown of translational elongation in Escherichia coli under hyperosmotic stress. mBio https://doi.org/10.1128/mBio.02375-17 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Woldringh, C. L., Binnerts, J. S. & Mans, A. Variation in Escherichia coli buoyant density measured in Percoll gradients. J. Bacteriol. 148, 58–63 (1981).

CAS  PubMed  PubMed Central  Google Scholar 

Kubitschek, H. E. Buoyant density variation during the cell cycle in microorganisms. CRC Crit. Rev. Microbiol. 14, 73–97 (1987).

CAS  Google Scholar 

Basan, M. et al. Inflating bacterial cells by increased protein synthesis. Mol. Syst. Biol. 11, 836 (2015).

PubMed  PubMed Central  Google Scholar 

Oldewurtel, E. R., Kitahara, Y. & van Teeffelen, S. Robust surface-to-mass coupling and turgor-dependent cell width determine bacterial dry-mass density. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2021416118 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Cayley, S., Lewis, B. A., Guttman, H. J. & Record, M. T. Characterization of the cytoplasm of Escherichia coli K-12 as a function of external osmolarity: implications for protein-DNA interactions in vivo. J. Mol. Biol. 222, 281–300 (1991).

CAS  PubMed  Google Scholar 

Milo, R. What is the total number of protein molecules per cell volume? A call to rethink some published values. BioEssays 35, 1050–1055 (2013).

CAS  PubMed  PubMed Central  Google Scholar 

Balakrishnan, R. et al. Principles of gene regulation quantitatively connect DNA to RNA and proteins in bacteria. bioRxiv https://doi.org/10.1101/2021.05.24.445329 (2021).

Article  Google Scholar 

Bremer, H. & Dennis, P. P. Modulation of chemical composition and other parameters of the cell at different exponential growth rates. EcoSal https://doi.org/10.1128/ecosal.5.2.3 (2008).

Article  Google Scholar 

Schmidt, A. et al. The quantitative and condition-dependent Escherichia coli proteome. Nat. Biotechnol. 34, 104–110 (2016).

CAS  PubMed  Google Scholar 

Mori, M. et al. From coarse to fine: the absolute Escherichia coli proteome under diverse growth conditions. Mol. Syst. Biol. 17, e9536 (2021).

CAS  PubMed  PubMed Central  Google Scholar 

Dai, X. et al. Reduction of translating ribosomes enables Escherichia coli to maintain elongation rates during slow growth. Nat. Microbiol. 2, 16231 (2016).

PubMed  PubMed Central  Google Scholar 

Jun, S., Si, F. W., Pugatch, R. & Scott, M. Fundamental principles in bacterial physiology-history, recent progress, and the future with focus on cell size control: a review. Rep. Prog. Phys. 81, 80 (2018).

Google Scholar 

Scott, M., Gunderson, C. W., Mateescu, E. M., Zhang, Z. & Hwa, T. Interdependence of cell growth and gene expression: origins and consequences. Science 330, 1099–1102 (2010).

CAS  PubMed  Google Scholar 

Neidhardt, F. C. & Magasanik, B. Studies on the role of ribonucleic acid in the growth of bacteria. Biochim. Biophys. Acta 42, 99–116 (1960).

CAS  PubMed  Google Scholar 

You, C. et al. Coordination of bacterial proteome with metabolism by cyclic AMP signalling. Nature 500, 301–306 (2013).

CAS  PubMed  PubMed Central  Google Scholar 

Maaloe, O. in Gene Expression Biological Regulation and Development (ed Goldberger, R. F.) 487–542 (Plenum Press, 1979).

Klumpp, S., Zhang, Z. & Hwa, T. Growth rate-dependent global effects on gene expression in bacteria. Cell 139, 1366–1375 (2009).

PubMed  PubMed Central  Google Scholar 

Hui, S. et al. Quantitative proteomic analysis reveals a simple strategy of global resource allocation in bacteria. Mol. Syst. Biol. 11, 784 (2015).

PubMed  PubMed Central  Google Scholar 

Schaechter, M., Maaloe, O. & Kjeldgaard, N. O. Dependency on medium and temperature of cell size and chemical composition during balanced grown of Salmonella typhimurium. J. Gen. Microbiol. 19, 592–606 (1958).

CAS  PubMed  Google Scholar 

Mairet, F., Gouze, J. L. & de Jong, H. Optimal proteome allocation and the temperature dependence of microbial growth laws. NPJ Syst. Biol. Appl. 7, 14 (2021).

CAS  PubMed  PubMed Central  Google Scholar 

Kaspy, I. et al. HipA-mediated antibiotic persistence via phosphorylation of the glutamyl-tRNA-synthetase. Nat. Commun. 4, 3001 (2013).

PubMed  Google Scholar 

Chubukov, V., Gerosa, L., Kochanowski, K. & Sauer, U. Coordination of microbial metabolism. Nat. Rev. Microbiol. 12, 327–340 (2014).

CAS  PubMed  Google Scholar 

Magasanik, B. Catabolite repression. Cold Spring Harb. Symposia Quant. Biol. 26, 249–256 (1961).

CAS  PubMed  Google Scholar 

Deutscher, J. The mechanisms of carbon catabolite repression in bacteria. Curr. Opin. Microbiol. 11, 87–93 (2008).

CAS  PubMed  Google Scholar 

Gorke, B. & Stulke, J. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat. Rev. Microbiol. 6, 613–624 (2008).

PubMed  Google Scholar 

Epps, H. M. & Gale, E. F. The influence of the presence of glucose during growth on the enzymic activities of Escherichia coli: comparison of the effect with that produced by fermentation acids. Biochem. J. 36, 619–623 (1942).

CAS  PubMed  PubMed Central  Google Scholar 

Ullmann, A. & Monod, J. Cyclic AMP as an antagonist of catabolite repression in Escherichia coli. FEBS Lett. 2, 57–60 (1968).

CAS  PubMed  Google Scholar 

Perlman, R. & Pastan, I. Cyclic 3’5-AMP: stimulation of beta-galactosidase and tryptophanase induction in E. coli. Biochem. Biophys. Res. Commun. 30, 656–664 (1968).

CAS  PubMed  Google Scholar 

Zubay, G., Schwartz, D. & Beckwith, J. Mechanism of activation of catabolite-sensitive genes: a positive control system. Proc. Natl Acad. Sci. USA 66, 104–110 (1970).

CAS  PubMed  PubMed Central  Google Scholar 

Saier, M. H. Jr, Feucht, B. U. & Hofstadter, L. J. Regulation of carbohydrate uptake and adenylate cyclase activity mediated by the enzymes II of the phosphoenolpyruvate: sugar phosphotransferase system in Escherichia coli. J. Biol. Chem. 251, 883–892 (1976).

CAS  PubMed  Google Scholar 

Kolb, A., Busby, S., Buc, H., Garges, S. & Adhya, S. Transcriptional regulation by cAMP and its receptor protein. Annu. Rev. Biochem. 62, 749–795 (1993).

CAS  PubMed  Google Scholar 

Postma, P. W., Lengeler, J. W. & Jacobson, G. R. Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol. Rev. 57, 543–594 (1993).

CAS  PubMed  PubMed Central  Google Scholar 

Saier, M. H. Jr. Regulatory interactions involving the proteins of the phosphotransferase system in enteric bacteria. J. Cell. Biochem. 51, 62–68 (1993).

CAS  PubMed  Google Scholar 

Deutscher, J., Francke, C. & Postma, P. W. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol. Mol. Biol. Rev. 70, 939–1031 (2006).

CAS  PubMed  PubMed Central  Google Scholar 

Epstein, W., Rothman-Denes, L. B. & Hesse, J. Adenosine 3’:5’-cyclic monophosphate as mediator of catabolite repression in Escherichia coli. Proc. Natl Acad. Sci. USA 72, 2300–2304 (1975).

CAS  PubMed  PubMed Central  Google Scholar 

Hogema, B. M. et al. Catabolite repression by glucose 6-phosphate, gluconate and lactose in Escherichia coli. Mol. Microbiol. 24, 857–867 (1997).

CAS  PubMed  Google Scholar 

Bettenbrock, K. et al. Correlation between growth rates, EIIACrr phosphorylation, and intracellular cyclic AMP levels in Escherichia coli K-12. J. Bacteriol. 189, 6891–6900 (2007).

CAS  PubMed  PubMed Central  Google Scholar 

McFall, E. & Magasanik, B. Effects of thymine and of phosphate deprivation on enzyme synthesis in Escherichia coli. Biochim. Biophys. Acta 55, 900–908 (1962).

CAS  Google Scholar 

Clark, D. J. & Marr, A. G. Studies on the repression of beta-galactosidase in Escherichia coli. Biochim. Biophys. Acta 92, 85–94 (1964).

CAS  PubMed 

留言 (0)

沒有登入
gif