Effects of human milk on body composition and growth in very low birthweight infants

Guellec, I. et al. Effect of intra- and extrauterine growth on long-term neurologic outcomes of very preterm infants. J. Pediatr. 175, 93–99 (2016).

Article  PubMed  Google Scholar 

Ramel, S. E. et al. Greater early gains in fat-free mass, but not fat mass, are associated with improved neurodevelopment at 1 year corrected age for prematurity in very low birth weight preterm infants. J. Pediatr. 173, 108–115 (2016).

Article  PubMed  Google Scholar 

Ramel, S. E., Haapala, J., Super, J., Boys, C. & Demerath, E. W. Nutrition, illness and body composition in very low birth weight preterm infants: implications for nutritional management and neurocognitive outcomes. Nutrients 12, 145 (2020).

Article  PubMed Central  Google Scholar 

Giannì, M. L. et al. Adiposity in small for gestational age preterm infants assessed at term equivalent age. Arch. Dis. Child. Fetal Neonatal Ed. 94, F368–F372 (2009).

Article  PubMed  Google Scholar 

Parlapani, E., Agakidis, C. & Karagiozoglou-Lampoudi, T. Anthropometry and body composition of preterm neonates in the light of metabolic programming. J. Am. Coll. Nutr. 37, 350–359 (2018).

Article  PubMed  Google Scholar 

Roggero, P. et al. Is term newborn body composition being achieved postnatally in preterm infants? Early Hum. Dev. 85, 349–352 (2009).

Article  PubMed  Google Scholar 

Johnson, M. J., Wooten, S. A., Leaf, A. A. & Jackson, A. A. Preterm birth and body composition at term equivalent age: a systematic review and meta-analysis. Pediatrics 130, e630–e649 (2012).

Article  Google Scholar 

Hair, A. B. et al. Beyond necrotizing enterocolitis prevention: improving outcomes with an exclusive human milk-based diet. Breastfeed. Med. 11, 70–74 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Eidelman, A. I. et al. Breastfeeding and the use of human milk. Pediatrics 129, 827–841 (2012).

Article  Google Scholar 

Rice, M. S. & Valentine, C. J. Neonatal body composition: measuring lean mass as a tool to guide nutrition management in the neonate. Nutr. Clin. Pract. 30, 625–632 (2015).

Article  PubMed  Google Scholar 

Lloyd, M. L., Malacova, E., Hartmann, B. & Simmer, K. A clinical audit of the growth of preterm infants fed predominantly pasteurised donor human milk v. those fed mother’s own milk in the neonatal intensive care unit. Br. J. Nutr. 121, 1018–1025 (2019).

Article  CAS  PubMed  Google Scholar 

Soldateli, B., Parker, M., Melvin, P., Gupta, M. & Belfort, M. Human milk feeding and physical growth in very low-birth-weight infants: a multicenter study. J. Perinatol. 40, 1246–1252 (2020).

Article  CAS  PubMed  Google Scholar 

Montjaux-Régis, N. et al. Improved growth of preterm infants receiving mother’s own raw milk compared with pasteurized donor milk. Acta Paediatr. 100, 1548–1554 (2011).

Article  PubMed  Google Scholar 

Cerasani, J. et al. Human milk feeding and preterm infants’ growth and body composition: a literature review. Nutrients 12, 1155 (2020).

Article  CAS  PubMed Central  Google Scholar 

Visuthranukul, C., Abrams, S. A., Hawthorne, K. M., Hagan, J. L. & Hair, A. B. Premature small for gestational age infants fed an exclusive human milk-based diet achieve catch-up growth without metabolic consequences at 2 years of age. Arch. Dis. Child. Fetal Neonatal Ed. 104, F242–F247 (2019).

Article  PubMed  Google Scholar 

American College of Obstetricians and Gynecologists' Committee on Practice Bulletins—Obstetrics and the Society forMaternal-FetalMedicin. ACOG Practice Bulletin No. 204: Fetal Growth Restriction. Obstet. Gynecol. 133, e97–e109 (2019).

Janisse, J. J., Bailey, B. A., Ager, J. & Sokol, R. J. Alcohol, tobacco, cocaine and marijuana use: relative contributions to preterm delivery and fetal growth restriction. Subst. Abus. 35, 60–67 (2014).

Article  PubMed  Google Scholar 

van Wyk, L. et al. Postnatal catch-up growth after suspected fetal growth restriction at term. Front. Endocrinol. 10, 274 (2019).

Article  Google Scholar 

Prolacta Bioscience®. Preterm nutrition products. Prolact HM® Product Specification Sheet. https://www.prolacta.com/en/products/preterm-nutrition-products/ (2018).

Hologic. Horizon DXA System. Body composition. https://www.hologic.com/hologic-products/body-composition/horizon-dxa-system#230548828-3749065048 (2022).

Brunton, J. A., Bayley, H. S. & Atkinson, S. A. Validation and application of dual-energy x-ray absorptiometry to measure bone mass and body composition in small infants. Am. J. Clin. Nutr. 58, 839–845 (1993).

Article  CAS  PubMed  Google Scholar 

Prolacta Bioscience®. Preterm nutrition products. Nutrition Information 100% Human milk-based neonatal nutritional products from prolacta bioscience. https://www.prolacta.com/en/products/preterm-nutrition-products/ (2021).

Fenton, T. R. et al. Accuracy of preterm infant weight gain velocity calculations vary depending on method used and infant age at time of measurement. Pediatr. Res. 85, 650–654 (2019).

Article  PubMed  Google Scholar 

Ezz-Eldin, Z. M., Hamid, T. A. A., Youssef, M. R. L. & Nabil, H. E. Clinical Risk Index for Babies (CRIB II) Scoring System in prediction of mortality in premature babies. J. Clin. Diagnostic Res. 9, 8–11 (2015).

Google Scholar 

Fenton, T. R. & Kim, J. H. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. BMC Pediatr. 13, 1–13 (2013).

Article  Google Scholar 

Zhang, Z. Missing data imputation: focusing on single imputation. Ann. Transl. Med. 4, 1–9 (2016).

CAS  Google Scholar 

Mcnelis, K. et al. Body composition of very low-birth-weight infants fed fortified human milk: a pilot study. J. Parenter. Enter. Nutr. 45, 784–791 (2021).

Article  CAS  Google Scholar 

Perrin, M. T. et al. The nutritional composition and energy content of donor human milk: a systematic review. Adv. Nutr. 11, 960–970 (2021).

Article  Google Scholar 

de Halleux, V. & Rigo, J. Variability in human milk composition: benefit of individualized fortification in very-low-birth-weight infants. Am. J. Clin. Nutr. 98, 529S–535S (2013).

Article  PubMed  Google Scholar 

Donath, S. M. & Amir, L. H. Does maternal obesity adversely affect breastfeeding initiation and duration? J. Paediatr. Child Health 36, 482–486 (2000).

Article  CAS  PubMed  Google Scholar 

Torloni, M. R. et al. Prepregnancy BMI and the risk of gestational diabetes: a systematic review of the literature with meta-analysis. Obes. Rev. 10, 194–203 (2009).

Article  CAS  PubMed  Google Scholar 

Chu, S. Y. et al. Maternal obesity and risk of gestational diabetes mellitus. Diabetes Care 30, 2070–2076 (2007).

Article  PubMed  Google Scholar 

Borràs-Novell, C. et al. Infrared analyzers for the measurement of breastmilk macronutrient content in the clinical setting. Expert Rev. Mol. Diagnostics 20, 867–887 (2020).

Article  Google Scholar 

留言 (0)

沒有登入
gif