Association between PTPN1 polymorphisms and obesity-related phenotypes in European adolescents: influence of physical activity

GBD 2015 Obesity Collaborators. Health effects of overweight and obesity in 195 countries over 25 years. N. Engl. J. Med. 377, 13–27 (2017).

Article  Google Scholar 

Xu, B. & Xie, X. Neurotrophic factor control of satiety and body weight. Nat. Rev. Neurosci. 17, 282–292 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abdalla, M. M. I. Central and peripheral control of food intake. Endocr. Regul. 51, 52–70 (2017).

Article  CAS  PubMed  Google Scholar 

Loos, R. J. F. & Yeo, G. S. H. The genetics of obesity: from discovery to biology. Nat. Rev. Genet. 23, 120–133 (2022).

Article  CAS  PubMed  Google Scholar 

Farooqi, I. S. & O’Rahilly, S. Genetics of obesity in humans. Endocr. Rev. 27, 710–718 (2006).

Article  CAS  PubMed  Google Scholar 

Sheikh, A. B. et al. The interplay of genetics and environmental factors in the development of obesity. Cureus 9, e1435 (2017).

PubMed  PubMed Central  Google Scholar 

Ruiz, J. R. et al. Attenuation of the effect of the FTO rs9939609 polymorphism on total and central body fat by physical activity in adolescents: the HELENA study. Arch. Pediatr. Adolesc. Med. 164, 328–333 (2010).

Article  PubMed  Google Scholar 

Pascual-Gamarra, J. M. et al. Association between UCP1, UCP2, and UCP3 gene polymorphisms with markers of adiposity in European adolescents: the HELENA study. Pediatr. Obes. 14, e12504 (2019).

Article  PubMed  Google Scholar 

Tanisawa, K., Tanaka, M. & Higuchi, M. Gene-exercise interactions in the development of cardiometabolic diseases. J. Phys. Fit. Sport. Med. 5, 25–36 (2016).

Article  Google Scholar 

Smith, J. K. Exercise and atherogenesis. Exerc. Sport Sci. Rev. 29, 49–53 (2001).

CAS  PubMed  Google Scholar 

Graff, M. et al. Genome-wide physical activity interactions in adiposity ― a meta-analysis of 200,452 adults. PLoS Genet 13, 1–26 (2017).

Google Scholar 

Ruiz, J. R. et al. Objectively measured physical activity and sedentary time in European adolescents. Am. J. Epidemiol. 174, 173–184 (2011).

Article  PubMed  Google Scholar 

Salazar‐Tortosa, D. F. et al. Association between lipoprotein lipase gene polymorphisms and cardiovascular disease risk factors in European adolescents: The Healthy Lifestyle in Europe by Nutrition in Adolescence study. Pediatr. Diabetes 21, 747–757 (2020).

Article  PubMed  Google Scholar 

Cho, H. Protein tyrosine phosphatase 1B (PTP1B) and obesity. Vitam. Horm. 91, 405–424 (2013).

Article  CAS  PubMed  Google Scholar 

Elchebly, M. et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 283, 1544–1548 (1999).

Article  CAS  PubMed  Google Scholar 

Zabolotny, J. M. et al. PTP1B regulates leptin signal transduction in vivo. Dev. Cell 2, 489–495 (2002).

Article  CAS  PubMed  Google Scholar 

Cheng, A. et al. Attenuation of leptin action and regulation of obesity by protein tyrosine phosphatase 1B. Dev. Cell 2, 497–503 (2002).

Article  CAS  PubMed  Google Scholar 

Klaman, L. D. et al. Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in Protein-Tyrosine Phosphatase 1B-deficient mice. Mol. Cell. Biol. 20, 5479–5489 (2000).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tsou, R. C. & Bence, K. K. The genetics of PTPN1 and obesity: Insights from mouse models of tissue-specific PTP1B deficiency. J. Obes. 2012, 1–8 (2012).

Article  Google Scholar 

Moreno, L. A. et al. Assessing, understanding and modifying nutritional status, eating habits and physical activity in European adolescents: the HELENA (Healthy Lifestyle in Europe by Nutrition in Adolescence) Study. Public Health Nutr. 11, 288–299 (2007).

Article  PubMed  Google Scholar 

Moreno, L. A. et al. Design and implementation of the Healthy Lifestyle in Europe by Nutrition in Adolescence Cross-Sectional Study. Int. J. Obes. 32, S4–S11 (2008).

Article  Google Scholar 

Béghin, L. et al. Quality assurance of ethical issues and regulatory aspects relating to good clinical practices in the HELENA Cross-Sectional Study. Int. J. Obes. 32, S12–S18 (2008).

Article  Google Scholar 

Nagy, E. et al. Harmonization process and reliability assessment of anthropometric measurements in a multicenter study in adolescents. Int. J. Obes. 32, S58–S65 (2008).

Article  Google Scholar 

Cole, T. J., Bellizzi, M. C., Flegal, K. M. & Dietz, W. H. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 320, 1240–1243 (2000).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Slaughter, M. et al. Skinfold equations for estimation of body fatness in children and youth. Hum. Biol. 60, 709–723 (1998).

Google Scholar 

González-Gross, M. et al. Sampling and processing of fresh blood samples within a European multicenter nutritional study: evaluation of biomarker stability during transport and storage. Int. J. Obes. 32, S66–S75 (2008).

Article  Google Scholar 

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. (2017).

Sham, P. C. & Purcell, S. M. Statistical power and significance testing in large-scale genetic studies. Nat. Rev. Genet. 15, 335–346 (2014).

Article  CAS  PubMed  Google Scholar 

Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. 57, 289–300 (1995).

Google Scholar 

Qu, H.-Q., Tien, M. & Polychronakos, C. Statistical significance in genetic association studies. Clin. Investig. Med. 33, E266–E270 (2010).

Article  Google Scholar 

Sinnwell, J. P. & Schaid, D. J. haplo.stats: statistical analysis of haplotypes with traits and covariates when linkage phase is ambiguous. https://cran.r-project.org/package=haplo.stats (2016).

González, J. R. et al. SNPassoc: an R package to perform whole genome association studies. Bioinformatics 23, 644–645 (2007).

Article  PubMed  Google Scholar 

Wang, N. et al. Distribution of recombination crossovers and the origin of haplotype blocks: the interplay of population history, recombination, and mutation. Am. J. Hum. Genet. 71, 1227–1234 (2002).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sterne, J. A. C. & Smith, G. D. Sifting the evidence-what’s wrong with significance tests? BMJ 322, 226–231. https://www.bmj.com/content/322/7280/226.1 (2001).

Palmer, N. D. et al. Association of protein tyrosine phosphatase 1B gene polymorphisms with measures of glucose homeostasis in Hispanic Americans: The Insulin Resistance Atherosclerosis Study (IRAS) family study. Diabetes 53, 3013–3019 (2004).

Article  CAS  PubMed  Google Scholar 

Spencer-Jones, N. J. et al. Protein tyrosine phosphatase-1B gene PTPN1: selection of tagging single nucleotide polymorphisms and association with body fat, insulin sensitivity, and the metabolic syndrome in a normal female population. Diabetes 54, 3296–3304 (2005).

Article  CAS  PubMed  Google Scholar 

Cheyssac, C. et al. Analysis of common PTPN1 gene variants in type 2 diabetes, obesity and associated phenotypes in the French population. BMC Med. Genet. 7, 1–10 (2006).

Article  Google Scholar 

Bento, J. L. et al. Association of protein tyrosine phosphatase 1B gene polymorphisms with type 2 diabetes. Diabetes 53, 3007–3012 (2004).

Article  CAS  PubMed  Google Scholar 

Bauer, F. et al. PTPN1 polymorphisms are associated with total and low-density lipoprotein cholesterol. Eur. J. Prev. Cardiol. 17, 28–34 (2010).

Article  Google Scholar 

Florez, J. C. et al. Association testing of the protein tyrosine phosphatase 1B gene (PTPN1) with type 2 diabetes in 7,883 people. Diabetes 54, 1884–1891 (2005).

Article  CAS  PubMed  Google Scholar 

Bauer, F. et al. No association of PTPN1 polymorphisms with macronutrient intake and measures of adiposity. Obesity 16, 2767–2771 (2008).

Article  CAS  PubMed  Google Scholar 

Meshkani, R. et al. Polymorphisms within the protein tyrosine phosphatase IB (PTPN1) gene promoter: functional characterization and association with type 2 diabetes and related metabolic traits. Clin. Chem. 53, 1585–1592 (2007).

Article  CAS  PubMed  Google Scholar 

Traurig, M. et al. Protein tyrosine phosphatase 1B is not a major susceptibility gene for type 2 diabetes mellitus or obesity among Pima Indians. Diabetologia 50, 985–989 (2007).

Article  CAS  PubMed  Google Scholar 

EMBL-EBI. GWAS Catalogue: PTPN1. https://www.ebi.ac.uk/gwas/genes/PTPN1 (2022).

The International HapMap Consortium. A haplotype map of the human genome. Nature 437, 1299–1320 (2005).

Article  PubMed Central  Google Scholar 

Geraldes, P. Protein phosphatases and podocyte function. Curr. Opin. Nephrol. Hypertens. 27, 49–55 (2018).

Article  CAS  PubM

留言 (0)

沒有登入
gif