Bordetella pertussis whole cell immunization protects against Pseudomonas aeruginosa infections

Center for Disease Control. Antibiotic resistance threats in the United States. Centers Dis. Control Prev. 114, 1–150 (2019).

Organization, W. Health. Global action plan on antimicrobial resistance. Microbe Mag. 10, 354–355 (2015).

Article  Google Scholar 

CDC. Antibiotic resistance threats. Cdc 22–50 (2013).

Reed, C. et al. On the mechanism of the adjuvant effect of Bordetella pertussis vaccine. J. Allergy Clin. Immunol. 49, 174–182 (1971).

Article  Google Scholar 

Berstad, A. K. et al. A nasal whole-cell pertussis vaccine induces specific systemic and cross-reactive mucosal antibody responses in human volunteers. J. Med. Microbiol. 49, 157–163 (2000).

Article  CAS  PubMed  Google Scholar 

Haugan, A. et al. Bordetella pertussis can act as adjuvant as well as inhibitor of immune responses to non-replicating nasal vaccines. Vaccine 22, 7–14 (2003).

Article  CAS  PubMed  Google Scholar 

Maruta, T., Oshima, M., Deitiker, P. R., Ohtani, M. & Atassi, M. Z. Use of alum and inactive Bordetella pertussis for generation of antibodies against synthetic peptides in mice. Immunol. Invest. 35, 137–148 (2006).

Article  CAS  PubMed  Google Scholar 

Aaby, P., Ravn, H. & Benn, C. S. The WHO review of the possible nonspecific effects of Diphtheria-Tetanus-Pertussis vaccine. Pediatr. Infect. Dis. J. 35, 1247–1257 (2016).

Article  PubMed  Google Scholar 

Aaby, P., Andersen, A., Ravn, H. & Zaman, K. Co-administration of BCG and Diphtheria-tetanus-pertussis (DTP) vaccinations may reduce infant mortality more than the WHO-schedule of BCG first and then DTP. A re-analysis of demographic surveillance data from rural Bangladesh. EBioMedicine 22, 173–180 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Song, J.-M., Van Rooijen, N., Bozja, J., Compans, R. W. & Kang, S.-M. Vaccination inducing broad and improved cross protection against multiple subtypes of influenza A virus. Proc. Natl Acad. Sci. USA 108, 757–761 (2011).

Article  CAS  PubMed  Google Scholar 

Vojtek, I., Buchy, P., Doherty, T. M. & Hoet, B. Would immunization be the same without cross-reactivity? Vaccine 37, 539–549 (2019).

Article  PubMed  Google Scholar 

Agrawal, B. Heterologous immunity: role in natural and vaccine-induced resistance to infections. Front. Immunol. 10, 1–11 (2019).

Article  Google Scholar 

Wrammert, J. et al. Broadly cross-reactive antibodies dominate the human B cell response against 2009 pandemic H1N1 influenza virus infection. J. Exp. Med. 208, 181–193 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Uppuluri, P. et al. The Hyr1 protein from the fungus Candida albicans is a cross kingdom immunotherapeutic target for Acinetobacter bacterial infection. PLoS Pathog. 14, 1–25 (2018).

Article  Google Scholar 

Barton, E. S. et al. Herpesvirus latency confers symbiotic protection from bacterial infection. Nature 447, 326–329 (2007).

Article  CAS  PubMed  Google Scholar 

Netea, M. G. et al. Trained immunity: a program of innate immune memory in health and disease. Science 352, 427 (2016).

Article  CAS  Google Scholar 

Netea, M. G. et al. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 20, 375–388 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Netea, M. G., Quintin, J. & Van Der Meer, J. W. M. Trained immunity: a memory for innate host defense. Cell Host Microbe 9, 355–361 (2011).

Article  CAS  PubMed  Google Scholar 

Blok, B. A. et al. Interacting, nonspecific, immunological effects of bacille calmette-guérin and tetanus-diphtheriapertussis inactivated polio vaccinations: an explorative, randomized trial. Clin. Infect. Dis. 70, 455–463 (2020).

CAS  PubMed  Google Scholar 

Zimmermann, P., Perrett, K. P., van der Klis, F. R. M. & Curtis, N. The immunomodulatory effects of measles-mumps-rubella vaccination on persistence of heterologous vaccine responses. Immunol. Cell Biol. 97, 577–585 (2019).

Article  CAS  PubMed  Google Scholar 

Butkeviciute, E., Jones, C. E. & Smith, S. G. Heterologous effects of infant BCG vaccination: potential mechanisms of immunity. Future Microbiol 13, 1193–1208 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bollaerts, K., Verstraeten, T. & Cohet, C. Observational studies of non-specific effects of Diphtheria-Tetanus-Pertussis vaccines in low-income countries: assessing the potential impact of study characteristics, bias and confounding through meta-regression. Vaccine 37, 34–40 (2019).

Article  PubMed  Google Scholar 

Vaugelade, J., Pinchinat, S., Guiella, G., Elguero, E. & Simondon, F. Non-specific effects of vaccination on child survival: Prospective cohort study in Burkina Faso. Br. Med. J. 329, 1309–1311 (2004).

Article  CAS  Google Scholar 

Belcher, T. et al. Live attenuated Bordetella pertussis vaccine candidate BPZE1 transiently protects against lethal pneumococcal disease in mice. Vaccine https://doi.org/10.1016/j.vaccine.2021.01.025 (2021).

Higgins, J. P. T. et al. Association of BCG, DTP, and measles containing vaccines with childhood mortality: systematic review. BMJ 355, 1–13 (2016).

Google Scholar 

Sivinski, J. et al. Functional differences between E. Coli and eskape pathogen groes/groel. MBio 12, 1–16 (2021).

Article  Google Scholar 

Boucher, H. W. et al. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis. 48, 1–12 (2009).

Article  PubMed  Google Scholar 

Rice, L. B. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: No ESKAPE. J. Infect. Dis. 197, 1079–1081 (2008).

Article  PubMed  Google Scholar 

Blackwood, C. B. et al. Innate and adaptive immune responses against Bordetella pertussis and Pseudomonas aeruginosa in a murine model of mucosal vaccination against respiratory infection. Vaccines 8, 1–21 (2020).

Sen-Kilic, E. et al. Defining the mechanistic correlates of protection conferred by whole-cell vaccination against Pseudomonas aeruginosa acute murine pneumonia. Infect. Immun. https://doi.org/10.1128/iai.00451-20 (2020).

Sharma, A., Krause, A. & Worgall, S. Recent developments for Pseudomonas vaccines. Hum. Vacc. https://doi.org/10.4161/hv.7.10.16369 (2011).

Priebe, G. P. & Goldberg, J. B. Vaccines for Pseudomonas aeruginosa: a long and winding road. Expert Rev. Vaccines 13, 507–519 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou, Z. et al. The ENaC-overexpressing mouse as a model of cystic fibrosis lung disease. J. Cyst. Fibros. https://doi.org/10.1016/S1569-1993(11)60021-0 (2011).

Jensen, P., Johansen, H. K., Lanng, S. & HØiby, N. Relative increase in IgG antibodies to Pseudomonas aeruginosa 60-kDa GroEL in prediabetic patients with cystic fibrosis. Pediatr. Res. 49, 423–428 (2001).

Article  CAS  PubMed  Google Scholar 

Woo, P. C. Y., Leung, P. K. L., Wong, S. S. Y., Ho, P. L. & Yuen, K. Y. groEL encodes a highly antigenic protein in Burkholderia pseudomallei. Clin. Diagn. Lab. Immunol. 8, 832–836 (2001).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bochkareva, E. S., Solovieva, M. E. & Girshovich, A. S. Targeting of GroEL to SecA on the cytoplasmic membrane of Escherichia coli. Proc. Natl Acad. Sci. USA 95, 478–483 (1998).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Charbona, G. et al. Localization of GroEL determined by in vivo incorporation of a fluorescent amino acid. Bioorg. Med. Chem. Lett. 21, 6067–6070 (2011).

Article  Google Scholar 

Fayet, O., Ziegelhoffer, T. & Georgopoulos, C. The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. J. Bacteriol. 171, 1379–1385 (1989).

Burns, J. L. et al. Longitudinal assessment of Pseudomonas aeruginosa in young children with cystic fibrosis. J. Infect. Dis. 183, 444–452 (2001).

Article  CAS  PubMed  Google Scholar 

Lin, Z., Madan, D. & Rye, H. S. GroEL stimulates protein folding through forced unfolding Zong. Nat. Struct. Mol. Biol. 15, 303–311 (2003).

Article  Google Scholar 

Sipos, A., Klocke, M. & Frosch, M. Cloning and sequencing of the genes coding for the 10- and 60-kDa heat shock proteins from Pseudomonas aeruginosa and mapping of a species-specific epitope. Infect. Immun. 59, 3219–3226 (1991).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pané-Farré, J., Quin, M. B., Lewis, R. J. & Marles-Wright, J. Macromolecular Protein Complexes. Sub-Cellular Biochemistry Vol. 83 (2017).

Woo, P. C. Y., Leung, P. K. L. & Wong, S. S. Y. groEL encodes a highly antigenic protein in Burkholderia pseudomallei. 8, 832–836 (2001).

Raeven, R. H. M. et al. Antibody specificity following a recent Bordetella pertussis infection in adolescence is correlated with the pertussis vaccine received in childhood. Front. Immunol. 10, 1364 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chitradevi, S. et al. Recombinant heat shock protein 60 (GroEL) of S. Typhi as an effective adjuvant in modulating the immunogenicity of Invasion plasmid antigen B (IpaB) of Shigella flexneri against lethal Shigella infection in mice. Cell. Mol. Immunol. 4, 7560 (2013).

Pechine, S., Hennequin, C., Hoys, S. & Collignon, A. Immunization using GroEL decreases clostridium difficile intestinal colonization. PLoS One. 8, 1–9 (2013).

Török, Z. et al. Evidence for a lipochaperonin: association of active protein-folding GroESL oligomers with lipids can stabilize membranes under heat shock conditions. Proc. Natl Acad. Sci. USA 94, 2192–2197 (1997).

Article  PubMed  PubMed Central  Google Scholar 

Huittinen, T. et al. Autoimmunity to human heat shock protein 60, Chlamydia pneumoniae infection, and inflammation in predicting coronary risk. Arterioscler. Thromb. Vasc. Biol. 22, 431–437 (2002).

Article  CAS  PubMed  Google Scholar 

Confer, A. W. & Ayalew, S. The OmpA family of proteins: roles in bacterial pathogenesis and immunity. Vet. Microbiol. 163, 207–222 (2013).

Article  CAS 

留言 (0)

沒有登入
gif