Compound A attenuates proinflammatory cytokine-induced endoplasmic reticulum stress in beta cells and displays beneficial therapeutic effects in a mouse model of autoimmune diabetes

Clark AL, Urano F (2016) Endoplasmic reticulum stress in β-cells and autoimmune diabetes. Curr Opin Immunol 43:60–66. https://doi.org/10.1016/j.coi.2016.09.006

Article  PubMed  PubMed Central  CAS  Google Scholar 

Tersey SA, Nishiki Y, Templin AT et al (2012) Islet β-cell endoplasmic reticulum stress precedes the onset of type 1 diabetes in the nonobese diabetic mouse model. Diabetes 61(4):818–827. https://doi.org/10.2337/db11-1293

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cardozo AK, Ortis F, Storling J et al (2005) Cytokines downregulate the sarcoendoplasmic reticulum pump Ca2+ ATPase 2b and deplete endoplasmic reticulum Ca2+, leading to induction of endoplasmic reticulum stress in pancreatic b-cells. Diabetes 54:452–461. https://doi.org/10.2337/diabetes.54.2.452

Article  PubMed  CAS  Google Scholar 

Miani M, Colli ML, Ladrière L, Cnop M, Eizirik DL (2012) Mild endoplasmic reticulum stress augments the proinflammatory effect of IL-1β in pancreatic rat β-cells via the IRE1α/XBP1s pathway. Endocrinology 153(7):3017–3028. https://doi.org/10.1210/en.2011-2090

Article  PubMed  CAS  Google Scholar 

Mandrup-Poulsen T, Pickersgill L, Donath MY (2010) Blockade of interleukin 1 in type 1 diabetes mellitus. Nat Rev Endocrinol 6(3):158–166. https://doi.org/10.1038/nrendo.2009.271 (PMID: 20173777)

Article  PubMed  CAS  Google Scholar 

Engin F, Yermalovich A, Nguyen T et al (2013) Restoration of the unfolded protein response in pancreatic β cells protects mice against type 1 diabetes. Sci Transl Med 5(211):211ra156. https://doi.org/10.1126/scitranslmed.3006534

Fu S, Yalcin A, Lee GY et al. (2015) Phenotypic assays identify azoramide as a small-molecule modulator of the unfolded protein response with antidiabetic activity. Sci Transl Med 7(292):292ra98. https://doi.org/10.1126/scitranslmed.aaa9134

De Bosscher K, Vanden Berghe W, Beck IM et al (2005) A fully dissociated compound of plant origin for inflammatory gene repression. Proc Natl Acad Sci U S A 102(44):15827–15832. https://doi.org/10.1073/pnas.0505554102

Article  PubMed  PubMed Central  CAS  Google Scholar 

Liberman AC, Antunica-Noguerol M, Ferraz-de-Paula V et al (2012) Compound A, a dissociated glucocorticoid receptor modulator, inhibits T-bet (Th1) and induces GATA-3 (Th2) activity in immune cells. PLoS ONE 7(4):e35155. https://doi.org/10.1371/journal.pone.0035155

Article  PubMed  PubMed Central  CAS  Google Scholar 

Barcala Tabarrozzi AE, Andreone L, Deckers J et al (2016) GR-independent down-modulation on GM-CSF bone marrow-derived dendritic cells by the selective glucocorticoid receptor modulator Compound A. Sci Rep 6:36646. https://doi.org/10.1038/srep36646

Article  PubMed  PubMed Central  CAS  Google Scholar 

Louw A, Swart P, de Kock SS, van der Merwe KJ (1997) Mechanism for the stabilization in vivo of the aziridine precursor 2-(4-acetoxyphenyl)-2-chloro-N-methyl-ethylammonium chloride by serum proteins. Biochem Pharmacol 53(2):189–197. https://doi.org/10.1016/s0006-2952(96)00661-2

Article  PubMed  CAS  Google Scholar 

Ricordi and Rastellini C (2000) Methods in pancreatic islet separation. In: Ricordi C, (Ed.) Methods in cell transplantation. Austin, TX: RG Landes 2000; 433–438

Ricordi C, Lacy PE, Scharp DW (1989) Automated islet isolation from human pancreas. Diabetes 38(1):140–142. https://doi.org/10.2337/diab.38.1.s140

Article  PubMed  Google Scholar 

Lakey JR, Warnock GL, Shapiro AM, Korbutt GS, Ao Z, Kneteman NM, Rajotte RV (1999) Intraductal collagenase delivery into the human pancreas using syringe loading or controlled perfusion. Cell Transplant 8(3):285–292. https://doi.org/10.1177/096368979900800309

Article  PubMed  CAS  Google Scholar 

Bottino R, Balamurugan AN, Bertera S, Pietropaolo M, Trucco M, Piganelli JD (2002) Preservation of human islet cell functional mass by anti-oxidative action of a novel SOD mimic compound. Diabetes 51(8):2561–2567. https://doi.org/10.2337/diabetes.51.8.2561

Article  PubMed  CAS  Google Scholar 

Castro CN, Barcala Tabarrozzi AE, Winnewisser J et al (2014) Curcumin ameliorates autoimmune diabetes. Evidences in accelerated murine models of type 1 diabetes. Clin Exp Immunol 177(1):149–160. https://doi.org/10.1111/cei.12322

Article  PubMed  PubMed Central  CAS  Google Scholar 

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

Article  PubMed  CAS  Google Scholar 

Atorrasagasti C, Onorato A, Gimeno ML et al (2019) SPARC is required for the maintenance of glucose homeostasis and insulin secretion in mice. Clin Sci (Lond) 133(2):351–365. https://doi.org/10.1042/CS20180714

Article  CAS  Google Scholar 

Perone MJ, Larregina AT, Shufesky WJ et al (2006) Transgenic galectin-1 induces maturation of dendritic cells that elicit contrasting responses on naïve and activated T cells. J Immunol 176(12):7207–7220. https://doi.org/10.4049/jimmunol.176.12.7207

Article  PubMed  CAS  Google Scholar 

Gurzov EN, Ortis F, Cunha DA et al (2009) Signaling by IL-1beta+IFN-gamma and ER stress converge on DP5/Hrk activation: a novel mechanism for pancreatic beta-cell apoptosis. Cell Death Differ 16(11):1539–1550. https://doi.org/10.1038/cdd.2009.99

Article  PubMed  CAS  Google Scholar 

Burke SJ, Lu D, Sparer TE, Karlstad MD, Collier JJ (2014) Transcription of the gene encoding TNF-α is increased by IL-1β in rat and human islets and β-cell lines. Mol Immunol 62(1):54–62. https://doi.org/10.1016/j.molimm.2014.05.019

Article  PubMed  PubMed Central  CAS  Google Scholar 

Igoillo-Esteve M, Marselli L, Cunha DA et al (2010) Palmitate induces a pro-inflammatory response in human pancreatic islets that mimics CCL2 expression by beta cells in type 2 diabetes. Diabetologia 53(7):1395–1405. https://doi.org/10.1007/s00125-010-1707-y

Article  PubMed  CAS  Google Scholar 

Eguchi K, Nagai R (2017) Islet inflammation in type 2 diabetes and physiology. J Clin Invest 127(1):14–23. https://doi.org/10.1172/JCI88877

Article  PubMed  PubMed Central  Google Scholar 

Donath MY, Størling J, Berchtold LA, Billestrup N, Mandrup-Poulsen T (2008) Cytokines and beta-cell biology: from concept to clinical translation. Endocr Rev 29(3):334–350. https://doi.org/10.1210/er.2007-0033

Article  PubMed  CAS  Google Scholar 

Størling J, Binzer J, Andersson AK et al Nitric oxide contributes to cytokine-induced apoptosis in pancreatic beta cells via potentiation of JNK activity and inhibition of Akt. Diabetologia 48(10):2039–50. https://doi.org/10.1007/s00125-005-1912-2.

Chan JY, Cooney GJ, Biden TJ, Laybutt DR (2011) Differential regulation of adaptive and apoptotic unfolded protein response signalling by cytokine-induced nitric oxide production in mouse pancreatic beta cells. Diabetologia 54(7):1766–1776. https://doi.org/10.1007/s00125-011-2139-z

Article  PubMed  CAS  Google Scholar 

Brozzi F, Nardelli TR, Lopes M et al (2015) Cytokines induce endoplasmic reticulum stress in human, rat and mouse beta cells via different mechanisms. Diabetologia 58:2307–2316. https://doi.org/10.1007/s00125-015-3669-6

Article  PubMed  CAS  Google Scholar 

Mandrup-Poulsen T (2001) beta-cell apoptosis: stimuli and signaling. Diabetes 50(Suppl 1):S58-63. https://doi.org/10.2337/diabetes.50.2007.s58

Article  PubMed  CAS  Google Scholar 

Takamura T, Kato I, Kimura N, Nakazawa T, Yonekura H, Takasawa S, Okamoto H (1998) Transgenic mice overexpressing type 2 nitric-oxide synthase in pancreatic beta cells develop insulin-dependent diabetes without insulitis. J Biol Chem 273(5):2493–2496. https://doi.org/10.1074/jbc.273.5.2493

Article  PubMed  CAS  Google Scholar 

Flodström M, Tyrberg B, Eizirik DL, Sandler S (1999) Reduced sensitivity of inducible nitric oxide synthase-deficient mice to multiple low-dose streptozotocin-induced diabetes. Diabetes 48(4):706–713. https://doi.org/10.2337/diabetes.48.4.706

Article  PubMed  Google Scholar 

Jiang X, Zhou Y, Wu KK, Chen Z, Xu A, Cheng KK (2017) APPL1 prevents pancreatic beta cell death and inflammation by dampening NFκB activation in a mouse model of type 1 diabetes. Diabetologia 60(3):464–474. https://doi.org/10.1007/s00125-016-4185-z

Article  PubMed  CAS  Google Scholar 

Patel S, Santani D (2009) Role of NF-kappa B in the pathogenesis of diabetes and its associated complications. Pharmacol Rep 61:595–603

Article  PubMed  CAS  Google Scholar 

Grey ST, Arvelo MB, Hasenkamp W, Bach FH, Ferran C (1999) A20 inhibits cytokine-induced apoptosis and nuclear factor kappaB-dependent gene activation in islets. J Exp Med 190(8):1135–1146. https://doi.org/10.1084/jem.190.8.1135

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cardozo AK, Heimberg H, Heremans Y et al (2001) A comprehensive analysis of cytokine-induced and nuclear factor-kappa B-dependent genes in primary rat pancreatic beta-cells. J Biol Chem 276(52):48879–48886. https://doi.org/10.1074/jbc.M108658200

Article  PubMed  CAS  Google Scholar 

Harding HP, Zeng H, Zhang Y et al (2001) Diabetes mellitus and exocrine pancreatic dysfunction in perk-/- mice reveals a role for translational control in secretory cell survival. Mol Cell 7(6):1153–1163. https://doi.org/10.1016/s1097-2765(01)00264-7

Article  PubMed  CAS  Google Scholar 

Back SH, Kaufman RJ (2012) Endoplasmic reticulum stress and type 2 diabetes. Annu Rev Biochem 81:767–793. https://doi.org/10.1146/annurev-biochem-072909-095555

Article  PubMed  PubMed Central  CAS  Google Scholar 

Brozzi F, Eizirik DL (2016) ER stress and the decline and fall of pancreatic beta cells in type 1 diabetes. Ups J Med Sci 121(2):133–139. https://doi.org/10.3109/03009734.2015.1135217

留言 (0)

沒有登入
gif