Recent advances on small molecules in osteogenic differentiation of stem cells and the underlying signaling pathways

Rinonapoli G, Ruggiero C, Meccariello L, Bisaccia M, Ceccarini P, Caraffa A. Osteoporosis in men: a review of an underestimated bone condition. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22042105.

Article  PubMed  PubMed Central  Google Scholar 

Yang J, Zhang X, Liang W, Chen G, Ma Y, Zhou Y, et al. Efficacy of adjuvant treatment for fracture nonunion/delayed union: a network meta-analysis of randomized controlled trials. Res Square; 2022.

Rodríguez-Merchán EC. Bone healing materials in the treatment of recalcitrant nonunions and bone defects. Int J Mol Sci. 2022. https://doi.org/10.3390/ijms23063352.

Article  PubMed  PubMed Central  Google Scholar 

Schmidt AH. Autologous bone graft: Is it still the gold standard? Injury. 2021;52:S18–22.

PubMed  Google Scholar 

Alonzo M, Alvarez Primo F, Anil Kumar S, Mudloff JA, Dominguez E, Fregoso G, et al. Bone tissue engineering techniques, advances, and scaffolds for treatment of bone defects. Curr Opin Biomed Eng. 2021;17: 100248.

CAS  PubMed  Google Scholar 

Moeinabadi-Bidgoli K, Babajani A, Yazdanpanah G, Farhadihosseinabadi B, Jamshidi E, Bahrami S, et al. Translational insights into stem cell preconditioning: from molecular mechanisms to preclinical applications. Biomed Pharmacother. 2021;142: 112026.

CAS  PubMed  Google Scholar 

Su X, Wang T, Guo S. Applications of 3D printed bone tissue engineering scaffolds in the stem cell field. Regen Ther. 2021;16:63–72.

CAS  PubMed  PubMed Central  Google Scholar 

Gritti N, Oriola D, Trivedi V. Rethinking embryology in vitro: A synergy between engineering, data science and theory. Dev Biol. 2021;474:48–61.

CAS  PubMed  Google Scholar 

Fu R, Liu C, Yan Y, Li Q, Huang R-L. Bone defect reconstruction via endochondral ossification: a developmental engineering strategy. J Tissue Eng. 2021;12:20417314211004212.

PubMed  PubMed Central  Google Scholar 

Safari B, Davaran S, Aghanejad A. Osteogenic potential of the growth factors and bioactive molecules in bone regeneration. Int J Biol Macromol. 2021;175:544–57.

CAS  PubMed  Google Scholar 

Ko FC, Sumner DR. How faithfully does intramembranous bone regeneration recapitulate embryonic skeletal development? Dev Dyn. 2021;250(3):377–92.

PubMed  Google Scholar 

Lo KWH, Ulery BD, Kan HM, Ashe KM, Laurencin CT. Evaluating the feasibility of utilizing the small molecule phenamil as a novel biofactor for bone regenerative engineering. J Tissue Eng Regen Med. 2014;8(9):728–36.

CAS  PubMed  Google Scholar 

Fan J, Im CS, Cui Z-K, Guo M, Bezouglaia O, Fartash A, et al. Delivery of phenamil enhances BMP-2-induced osteogenic differentiation of adipose-derived stem cells and bone formation in calvarial defects. Tissue Eng Part A. 2015;21(13–14):2053–65.

CAS  PubMed  PubMed Central  Google Scholar 

Fan J, Im CS, Guo M, Cui Z-K, Fartash A, Kim S, et al. Enhanced osteogenesis of adipose-derived stem cells by regulating bone morphogenetic protein signaling antagonists and agonists. Stem Cells Transl Med. 2016;5(4):539–51.

CAS  PubMed  PubMed Central  Google Scholar 

Rezia Rad M, Khojaste M, Hasan Shahriari M, Asgary S, Khojasteh A. Purmorphamine increased adhesion, proliferation and expression of osteoblast phenotype markers of human dental pulp stem cells cultured on beta-tricalcium phosphate. Biomed Pharmacother. 2016;82:432–8.

CAS  PubMed  Google Scholar 

Wu W, Ye Z, Zhou Y, Tan W-S. AICAR, a small chemical molecule, primes osteogenic differentiation of adult mesenchymal stem cells. Int J Artif Organs. 2011;34(12):1128–36.

CAS  PubMed  Google Scholar 

Safari B, Aghanejad A, Roshangar L, Davaran S. Osteogenic effects of the bioactive small molecules and minerals in the scaffold-based bone tissue engineering. Colloids Surf, B. 2021;198: 111462.

CAS  Google Scholar 

James AW. Review of signaling pathways governing MSC osteogenic and adipogenic differentiation. Scientifica. 2013. https://doi.org/10.1155/2013/684736.

Article  PubMed  PubMed Central  Google Scholar 

Houschyar KS, Tapking C, Borrelli MR, Popp D, Duscher D, Maan ZN, et al. Wnt pathway in bone repair and regeneration - What Do We Know So Far. Front Cell Dev Biol. 2018;6:170.

PubMed  Google Scholar 

Kim JH, Liu X, Wang J, Chen X, Zhang H, Kim SH, et al. Wnt signaling in bone formation and its therapeutic potential for bone diseases. Ther Adv Musculoskelet Dis. 2013;5(1):13–31.

CAS  PubMed  PubMed Central  Google Scholar 

Olivares-Navarrete R, Hyzy SL, Hutton DL, Dunn GR, Appert C, Boyan BD, et al. Role of non-canonical Wnt signaling in osteoblast maturation on microstructured titanium surfaces. Acta Biomater. 2011;7(6):2740–50.

CAS  PubMed  PubMed Central  Google Scholar 

Shahnazari M, Yao W, Corr M, Lane NE. Targeting the Wnt signaling pathway to augment bone formation. Curr Osteoporos Rep. 2008;6(4):142–8.

PubMed  PubMed Central  Google Scholar 

Chen G, Deng C, Li YP. TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci. 2012;8(2):272–88.

CAS  PubMed  PubMed Central  Google Scholar 

Liu G, Lu Y, Mai Z, Liu R, Peng Z, Chen L, et al. Suppressing MicroRNA-30b by estrogen promotes osteogenesis in bone marrow mesenchymal stem cells. Stem Cells Int. 2019;2019:7547506.

PubMed  PubMed Central  Google Scholar 

Xie Z, Xu Y, Wei X, An G, Hao M, Yu Z, et al. Four and a half LIM domains protein 2 mediates bortezomib-induced osteogenic differentiation of mesenchymal stem cells in multiple myeloma through p53 signaling and β-catenin nuclear enrichment. Front Oncol. 2021. https://doi.org/10.3389/fonc.2021.729799.

Article  PubMed  PubMed Central  Google Scholar 

Manzari-Tavakoli A, Babajani A, Farjoo MH, Hajinasrollah M, Bahrami S, Niknejad H. The cross-talks among bone morphogenetic protein (BMP) signaling and other prominent pathways involved in neural differentiation. Front Mol Neurosci. 2022;15:827275.

CAS  PubMed  PubMed Central  Google Scholar 

Beederman M, Lamplot JD, Nan G, Wang J, Liu X, Yin L, et al. BMP signaling in mesenchymal stem cell differentiation and bone formation. J Biomed Sci Eng. 2013;6(8A):32–52.

PubMed  PubMed Central  Google Scholar 

Kang H, Shih Y-RV, Nakasaki M, Kabra H, Varghese S. Small molecule-driven direct conversion of human pluripotent stem cells into functional osteoblasts. Sci Adv. 2016;2(8):e1600691.

PubMed  PubMed Central  Google Scholar 

Carroll SH, Wigner NA, Kulkarni N, Johnston-Cox H, Gerstenfeld LC, Ravid K. A2B adenosine receptor promotes mesenchymal stem cell differentiation to osteoblasts and bone formation in vivo. J Biol Chem. 2012;287(19):15718–27.

CAS  PubMed  PubMed Central  Google Scholar 

D’Alimonte I, Nargi E, Lannutti A, Marchisio M, Pierdomenico L, Costanzo G, et al. Adenosine A1 receptor stimulation enhances osteogenic differentiation of human dental pulp-derived mesenchymal stem cells via WNT signaling. Stem Cell Res. 2013;11(1):611–24.

CAS  PubMed  Google Scholar 

Rao V, Shih Y-RV, Kang H, Kabra H, Varghese S. Adenosine signaling mediates osteogenic differentiation of human embryonic stem cells on mineralized matrices. Front Bioeng Biotechnol. 2015. https://doi.org/10.3389/fbioe.2015.00185.

Article  PubMed  PubMed Central  Google Scholar 

Eisenstein A, Chitalia SV, Ravid K. Bone marrow and adipose tissue adenosine receptors effect on osteogenesis and adipogenesis. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21207470.

Article  PubMed  PubMed Central  Google Scholar 

Strazzulla LC, Cronstein BN. Regulation of bone and cartilage by adenosine signaling. Purinergic Signal. 2016;12(4):583–93.

CAS  PubMed  PubMed Central  Google Scholar 

Lopez CD, Bekisz JM, Corciulo C, Mediero A, Coelho PG, Witek L, et al. Local delivery of adenosine receptor agonists to promote bone regeneration and defect healing. Adv Drug Deliv Rev. 2019;146:240–7.

CAS  PubMed  Google Scholar 

Tong X, Ganta RR, Liu Z. AMP-activated protein kinase (AMPK) regulates autophagy, inflammation and immunity and contributes to osteoclast differentiation and functionabs. Biol Cell. 2020;112(9):251–64.

CAS  PubMed  Google Scholar 

Zhang Z, Zhang X, Zhao D, Liu B, Wang B, Yu W, et al. TGF-β1 promotes the osteoinduction of human osteoblasts via the PI3K/AKT/mTOR/S6K1 signalling pathway. Mol Med Rep. 2019;19(5):3505–18.

CAS  PubMed  PubMed Central  Google Scholar 

Lv W-T, Du D-H, Gao R-J, Yu C-W, Jia Y, Jia Z-F, et al. Regulation of hedgehog signaling offers a novel perspective for bone homeostasis disorder treatment. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20163981.

Article  PubMed  PubMed Central  Google Scholar 

Li L, Dong Q, Wang Y, Feng Q, Zhou P, Ou X, et al. Hedgehog signaling is involved in the BMP9-induced osteogenic differentiation of mesenchymal stem cells. Int J Mol Med. 2015;35(6):1641–50.

CAS  PubMed  Google Scholar 

McGrath EE. OPG/RANKL/RANK pathway as a therapeutic target in cancer. J Thorac Oncol. 2011;6(9):1468–73.

PubMed  Google Scholar 

Ghorbaninejad M, Khademi-Shirvan M, Hosseini S, Baghaban EM. Epidrugs: novel epigenetic regulators that open a new window for targeting osteoblast differentiation. Stem Cell Res Ther. 2020;11(1):456.

CAS  PubMed  PubMed Central  Google Scholar 

Wang G, Pan J, Chen S-D. Kinases and kinase signaling pathways: potential therapeutic targets in Parkinson’s disease. Prog Neurobiol. 2012;98(2):207–21.

CAS  PubMed 

留言 (0)

沒有登入
gif