Functional brain imaging interventions for radiation therapy planning in patients with glioblastoma: a systematic review

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J Clin. 2021;71(3):209–49.

Google Scholar 

Ostrom QT, Patil N, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan JS. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2013–2017. Neuro-Oncology. 2020;22(Supplement_1):1–96.

Google Scholar 

Ostrom QT, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan JS. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2014-2018. Neuro-oncology. 2021;23(12 Suppl 2):III1–III105. Available from: https://pubmed.ncbi.nlm.nih.gov/34608945/.

Australian Institute of Health and Welfare (AIHW). Australian institute of health and welfare 2019. Cancer in Australia: In brief 2019. Canberra: Australian Government; 2019. Available from: https://www.aihw.gov.au/reports/cancer/cancer-data-in-australia/contents/summary.

Deloitte Access Economics. The economic cost of cancer in adolescents and young adults. Canteen; 2018. Available from: www.youthcancer.com.au.

Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro-Oncology. 2021;23(8):1231–51.

PubMed  PubMed Central  CAS  Google Scholar 

Weller M, Van den Bent M, Tonn JC, Stupp R, Preusser M, Cohen-Jonathan-Moyal E, et al. European association for neuro-oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendroglial gliomas. Lancet Oncol. 2017;18(6):e315–29.

PubMed  Google Scholar 

Kazda T, Dziacky A, Burkon P, Pospisil P, Slavik M, Rehak Z, et al. Radiotherapy of glioblastoma 15 years after the landmark Stupp’s trial: More controversies than standards? Radiol Oncol. 2018;52(2):121–8.

PubMed  PubMed Central  Google Scholar 

Stupp R, Mason WP, Van Den Bent MJ, Weller M, Fisher B, Taphoorn MJB, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.

PubMed  CAS  Google Scholar 

Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10(5):459–66.

PubMed  CAS  Google Scholar 

Stupp R, Taillibert S, Kanner AA, Kesari S, Steinberg DM, Toms SA, et al. Maintenance therapy with tumor-treating fields plus temozolomide vs temozolomide alone for glioblastoma: a randomized clinical trial. JAMA. 2015;314(23):2535–43.

PubMed  CAS  Google Scholar 

Weller M, Butowski N, Tran DD, Recht LD, Lim M, Hirte H, et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol. 2017;18(10):1373–85.

PubMed  CAS  Google Scholar 

Peters L, O’Sullivan B, Giralt J, Fitzgerald T, Trotti A, Bernier J, et al. Critical impact of radiotherapy protocol compliance and quality in the treatment of advanced head and neck cancer: results from TROG 02.02. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28(18):2996–3001.

Google Scholar 

Segedin B, Petric P, Petrič P. Uncertainties in target volume delineation in radiotherapy-are they relevant and what can we do about them? Radiol Oncol. 2016;50(3):254–62.

PubMed  PubMed Central  Google Scholar 

Peeken JC, Molina-Romero M, Diehl C, Menze BH, Straube C, Meyer B, et al. Deep learning derived tumor infiltration maps for personalized target definition in Glioblastoma radiotherapy. Radiother Oncol. 2019;9(138):166–72.

Google Scholar 

Zhao F, Li M, Kong L, Zhang G, Yu J. Delineation of radiation therapy target volumes for patients with postoperative glioblastoma: a review. Onco Targets Ther. 2016;9:3197–204.

PubMed  PubMed Central  CAS  Google Scholar 

Kumar N, Kumar R, Sharma SC, Mukherjee KK, Khandelwal N, Kumar R, et al. To compare the treatment outcomes of two different target volume delineation guidelines (rtog vs md anderson) in glioblastoma multiforme patients: a prospective randomized study. Neuro-Oncology 2012;14(suppl_6):vi133–vi141. Available from: https://academic.oup.com/neuro-oncology/article/14/suppl_6/vi133/1058359.

Law I, Albert NL, Arbizu J, Boellaard R, Drzezga A, Galldiks N, et al. Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and (18 F) FDG. Eur J Nucl Med Mol Imaging. 2019;33:540–57.

Google Scholar 

Singh R, Lehrer EJ, Wang M, Perlow HK, Zaorsky NG, Trifiletti DM, et al. Dose escalated radiation therapy for glioblastoma multiforme: an international systematic review and meta-analysis of 22 prospective trials. Int J Radiat Oncol Biol Phys. 2021;111(2):371–84.

PubMed  Google Scholar 

Gondi V, Pugh S, Tsien C, Chenevert T, Gilbert M, Omuro A, et al. Radiotherapy (RT) dose-intensification (DI) using intensity-modulated RT (IMRT) versus standard-dose (SD) RT with temozolomide (TMZ) in newly diagnosed glioblastoma (GBM): preliminary results of NRG oncology BN001. Int J Radiat Oncol Biol Phys. 2020;108(3):S22–3.

Google Scholar 

Troost EGC, Thorwarth D, Oyen WJG. Imaging-based treatment adaptation in radiation oncology. J Nucl Med. 2015;56(12):1922–9.

PubMed  Google Scholar 

Thorwarth D. Functional imaging for radiotherapy treatment planning: current status and future directions: a review. Br J Radiol. 2015;88(1051):20150056.

Jiang H, Yu K, Li M, Cui Y, Ren X, Yang C, et al. Classification of progression patterns in glioblastoma: analysis of predictive factors and clinical implications. Front Oncol. 2020;11(10):2408.

Google Scholar 

Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med Off Publ Soc Nucl Med. 2000;41(8):1369–79.

CAS  Google Scholar 

Gurney-Champion OJ, Mahmood F, van Schie M, Julian R, George B, Philippens MEP, et al. Quantitative imaging for radiotherapy purposes. Radiother Oncol. 2020;5(146):66–75.

Google Scholar 

Sun R, Lerousseau M, Henry T, Carré A, Leroy A, Estienne T, et al. Intelligence artificielle en radiothérapie : radiomique, pathomique, et prédiction de la survie et de la réponse aux traitements. Cancer /Radiothér. 2021;25(6–7):630–7.

CAS  Google Scholar 

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;3:372.

Google Scholar 

Ryan J, Gleeson I, Mannion L, Kelly J, Ng SP, Everitt S, et al. A systematic review of functional brain imaging in radiotherapy planning for glioblastoma multiforme patients using the TIDieR framework. PROSPERO: International prospective register of systematic reviews. PROSPERO; 2021. Available from: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021221021.

Covidence. Systematic review software. Melbourne,: Veritas Health Innovation; 2021. Available from: http://www.covidence.org/.

Hoffmann TC, Glasziou PP, Boutron I, Milne R, Perera R, Moher D, et al. Better reporting of interventions: template for intervention description and replication (TIDieR) checklist and guide. BMJ (Online). 2014;3;348. Available from: https://pubmed.ncbi.nlm.nih.gov/24609605/.

Wells G, Shea B, O’Connell D, Peterson J, Welch V. The Newcastle–Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Newcastle & Ottawa Universities; 2000. Available from: http://www3.med.unipmn.it/dispense_ebm/2009-2010/Corso%20Perfezionamento%20EBM_Faggiano/NOS_oxford.pdf.

Geisler J, Niyazi M, Bartenstein P, Belka C, la Fougere C. FET-PET for radiotherapy planning in malignant glioma. J Nucl Med. 2011;52. Available from: \(<\)Go to ISI\(>\)://WOS:000443798902213.

Niyazi M, Geisler J, Siefert A, Schwarz SB, Ganswindt U, Garny S, et al. FET-PET for malignant glioma treatment planning. Radiother Oncol J Eur Soc Ther Radiol Oncol. 2011;99(1):44–8.

Google Scholar 

Piroth MD, Holy R, Pinkawa M, Stoffels G, Kaiser HJ, Galldiks N, et al. Prognostic impact of postoperative, pre-irradiation (18)F-fluoroethyl-l-tyrosine uptake in glioblastoma patients treated with radiochemotherapy. Radiother Oncol J Eur Soc Ther Radiol Oncol. 2011;99(2):218–24.

CAS  Google Scholar 

Piroth MD, Stoffels G, Kaiser HJ, Galldiks N, Herzog H, Coenen HH, et al. F-18-Fluoroethyltyrosine-PET imaging in glioblastoma patients for radiotherapy planning and response analysis - clinical and experimental evaluation. Strahlentherapie und Onkol. 2011;187(9):595.

Google Scholar 

Piroth MD, Pinkawa M, Holy R, Klotz J, Schaar S, Stoffels G, et al. Integrated boost IMRT with FET-PET-adapted local dose escalation in glioblastomas. Results of a prospective phase II study. Strahlenther Onkol. 2012;188(4):334–9.

PubMed  CAS  Google Scholar 

Piroth MD, Galldiks N, Pinkawa M, Holy R, Stoffels G, Ermert J, et al. Relapse patterns after radiochemotherapy of glioblastoma with FET PET-guided boost irradiation and simulation to optimize radiation target volume. Radiation Oncol (London, England). 2016;6(11):87.

Google Scholar 

Laouiti M, Lauffer D, Garibotto V, Weber DC. Dose escalation using intensity modulated radiation therapy with a simultaneous integrated boost technique to FET PET avid regions and concomitant chemotherapy for newly diagnosed glioblastoma. Strahlentherapie und Onkol. 2013;189(12):1087.

Google Scholar 

Miwa K, Shinoda J, Yano H, Iwama T. Metabolically positive lesion before hypofractionated radiation therapy and its impact on outcome for patients with glioblastoma multiforme. Int J Radiat Oncol Biol Phys. 2013;87(2):S247.

Google Scholar 

Munck af R, Costa J, Engelholm SA, Lundemann MJ, Law I, Ohlhues L, et al. Impact of F-18 -fluoro-ethyl-tyrosine PET imaging on target definition for radiation therapy of high-grade glioma. Neuro Oncol. 2015;17(5):757–63.

Google Scholar 

Munck Af Rosenschold P, Law I, Engelholm S, Engelholm SA, Muhic A, Lundemann MJ, et al. Influence of volumetric modulated arc therapy and FET-PET scanning on treatment outcomes for glioblastoma patients. Radiother Oncol J Eur Soc Ther Radiol Oncol. 2019;1;130:149–55.

Google Scholar 

Lundemann J, Costa JC, Law I, Muhic A, Engelholm SA, af Rosenschold PM. Pattern of failure in glioblastoma patients after FET-PET and MRI-guided chemo-radiotherapy. Radiother Oncol. 2016;119:S304–S304.

Google Scholar 

Lundemann M, Costa JC, Law I, Engelholm SA, Muhic A, Poulsen HS, et al. Patterns of failure for patients with glioblastoma following O-(2-[(18)F]fluoroethyl)-L-tyrosine PET- and MRI-guided radiotherapy. Radiother Oncol J Eur Soc Ther Radiol Oncol. 2017;122(3):380–6.

Google Scholar 

Lundemann M, Munck Af Rosenschöld P, Muhic A, Larsen VA, Poulsen HS, Engelholm SA, et al. Feasibility of multi-parametric PET and MRI for prediction of tumour recurrence in patients with glioblastoma. Eur J Nucl Med Mol Imaging. 2019;46(3):603–13.

PubMed  Google Scholar 

Poulsen S, Urup T, Grunnet K, Christensen I, Larsen V, Per R, et al. The prognostic value of O-(2-18F-fluoroethyl)-L-tyrosine positron emission tomography (FET-PET) at radiotherapy planning in newly diagnosed glioblastoma. J Nucl Med. 2016;57(supplement 2):182.

Poulsen SH, Urup T, Grunnet K, Christensen IJ, Larsen VA, Jensen ML, et al. The prognostic value of FET PET at radiotherapy planning in newly diagnosed glioblastoma. Eur J Nucl Med Mol Imaging. 2017;44(3):373–81.

PubMed  CAS  Google Scholar 

Harat M, Malkowski B, Wiatrowska I, Makarewicz R, Roszkowski K. Relationship between glioblastoma dose volume parameters measured by dual time point Fluoroethylthyrosine-PET and clinical outcomes. Front Neurol. 2018;8(JAN):756.

Hayes AR, Jayamanne D, Hsiao E, Schembri GP, Bailey DL, Roach PJ, et al. Utilizing 18F-fluoroethyltyrosine (FET) positron emission tomography (PET) to define suspected nonenhancing tumor for radiation therapy planning of glioblastoma. Pract Radiat Oncol. 2018;8(4):230–8.

PubMed  Google Scholar 

Fleischmann DF, Unterrainer M, Schön R, Corradini S, Maihöfer C, Bartenstein P, et al. Margin reduction in radiotherapy for glioblastoma through (18)F-fluoroethyltyrosine PET? - A recurrence pattern analysis. Radiother Oncol. 2020;145:49–55.

PubMed  CAS  Google Scholar 

Matsuo M, Miwa K, Tanaka O, Shinoda J, Nishibori H, Tsuge Y, et al. Impact of [11C]methionine positron emission tomography for target definition of glioblastoma multiforme in radiation therapy planning. Int J Radiat Oncol Biol Phys. 2012;82(1):83–9.

PubMed  Google Scholar 

Matsuo M, Tanaka H, Hyodo F, Miwa K, Shinoda J. Methionine positron emission tomography for malignant brain tumors in radiation therapy planning. Int J Radiat Oncol Biol Phys. 2019;105(1):E103.

Google Scholar 

Vigil C, Prieto E, Hernandez M, Caicedo C, Rodriguez-Ruiz M, Garcia-Granero M, et al. Radiotherapy planning of glioblastoma using C-11-methionine-PET/CT and MRI: prediction of recurrence and survival analysis. Eur J Nucl Med Mol Imaging. 2013;40:S238–9.

Google Scholar 

Vigil C, Prieto E, Ribelles M, Olarte A, Hernandez M, Valtuena G, et al. Prediction of recurrence and survival analysis after radiotherapy of glioblastoma using 11C-Methionine PET/CT and MR. J Nucl Med. 2014;55(supplement 1):12.

Hirata T, Kinoshita M, Tamari K, Seo Y, Suzuki O, Wakai N, et al. Impact of 11c-methionine/FDG dural tracer petbased, compared with MRI-based target delineation of malignant gliomas for radiation planning. Neuro Oncol. 2018;20:vi232–3.

PubMed Central  Google Scholar 

Hirata T, Kinoshita M, Tamari K, Seo Y, Suzuki O, Wakai N, et al. 11C-methionine-18F-FDG dual-PET-tracer-based target delineation of malignant glioma: evaluation of its geometrical and clinical features for planning radiation therapy. J Neurosurg. 2019;131(3):676–86.

PubMed  CAS  Google Scholar 

Christensen ME, Kamson D, Snyder M, Hallock A, Kim H, Mittal S, et al. Tumor volume for glioblastoma as defined by tryptophan PET offers superior coverage of recurrence site than standard MRI-based GTV. Int J Radiat Oncol Biol Phys. 2012;84(3):S271–S271.

Google Scholar 

Christensen M, Kamson DO, Snyder M, Kim H, Robinette NL, Mittal S, et al. Tryptophan PET-defined gross tumor volume offers better coverage of initial progression than standard MRI-based planning in glioblastoma patients. J Radiat Oncol. 2014;3(2):131–8.

留言 (0)

沒有登入
gif