Identification of protein profile in metacyclic and amastigote-like stages of Leishmania tropica: a proteomic approach

Ahmadi N, Modiri M, Mamdohi S (2013) First survey of cutaneous leishmaniasis in Borujerd county, western Islamic Republic of Iran. East Mediterr Health J 19(10):847

CAS  PubMed  Google Scholar 

Amiri-Dashatan N, Koushki M, Rezaei Tavirani M, Ahmadi N (2018) Proteomic-based Studies on Leishmania. J Mazand Univ Med Sci 28(163):173–190

Google Scholar 

Amiri-Dashatan N, Rezaei-Tavirani M, Ahmadi N (2020) A quantitative proteomic and bioinformatics analysis of proteins in metacyclogenesis of Leishmania tropica. Acta Trop 202:105227

CAS  PubMed  Google Scholar 

Amiri-Dashatan N, Rezaei-Tavirani M, Zali H, Koushki M, Ahmadi N (2020) Quantitative proteomic analysis reveals differentially expressed proteins in Leishmania major metacyclogenesis. Microbial Pathog 149:104557

CAS  Google Scholar 

Ashrafmansouri M, Sarkari B, Hatam G, Habibi P, Khabisi SA (2015) Utility of Western blot analysis for the diagnosis of cutaneous Leishmaniasis. Iran J Parasitol 10(4):599

PubMed  PubMed Central  Google Scholar 

Ashrafmansouri M, Sadjjadi FS, Seyyedtabaei S, Haghighi A, Rezaei-Tavirani M, Ahmadi N (2019) Comparative two-dimensional gel electrophoresis maps for amastigote-like proteomes of Iranian Leishmania tropica and Leishmania major Isolates. Galen Medical Journal 8:1520

Google Scholar 

Aslett M, Aurrecoechea C, Berriman M, Brestelli J, Brunk BP, Carrington M, Depledge DP, Fischer S, Gajria B, Gao X (2009) TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res 38(supp1):D457–D462

PubMed  PubMed Central  Google Scholar 

Atan NAD, Koushki M, Ahmadi NA, Rezaei-Tavirani M (2018) Metabolomics-based studies in the field of Leishmania/leishmaniasis. Alexandria J Med 54:383

Google Scholar 

Avilán L, Gualdrón-López M, Quiñones W, González-González L, Hannaert V, Michels PA, Concepción J-L (2011) Enolase: a key player in the metabolism and a probable virulence factor of trypanosomatid parasites—perspectives for its use as a therapeutic target. Enzyme Res 2011:1

Google Scholar 

Bader GD, Hogue CW (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4(1):2

PubMed  PubMed Central  Google Scholar 

Bente M, Harder S, Wiesgigl M, Heukeshoven J, Gelhaus C, Krause E, Clos J, Bruchhaus I (2003) Developmentally induced changes of the proteome in the protozoan parasite Leishmania donovani. Proteomics 3(9):1811–1829

CAS  PubMed  Google Scholar 

Chávez-Fumagalli MA, Schneider MS, Lage DP, Tavares GdSV, Mendonça DVC, Santos TTdO, Pádua RM, Machado-de-Ávila RA, Leite JPV, Coelho EAF (2018) A computational approach using bioinformatics to screening drug targets for Leishmania infantum Species. Evidence-Based Complement Alternat Med 2018:1

Google Scholar 

Cv M, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B (2003) STRING: a database of predicted functional associations between proteins. Nucleic Acids Res 31(1):258–261

Google Scholar 

Dashatan NA, Tavirani MR, Zali H, Koushki M, Ahmadi N (2018) Prediction of Leishmania Major Key Proteins via Topological Analysis of Protein-Protein Interaction Network. Galen Med J 7:e1129

Google Scholar 

Desjeux P (1996) Leishmaniasis: public health aspects and control. Clin Dermatol 14(5):417–423

CAS  PubMed  Google Scholar 

Desjeux P (2001) Worldwide increasing risk factors for leishmaniasis. Med Microbiol Immunol 190(1):77–79

CAS  PubMed  Google Scholar 

El Fadili K, Drummelsmith J, Roy G, Jardim A, Ouellette M (2009) Down regulation of KMP-11 in Leishmania infantum axenic antimony resistant amastigotes as revealed by a proteomic screen. Exp Parasitol 123(1):51–57

PubMed  Google Scholar 

El Fakhry Y, Ouellette M, Papadopoulou B (2002) A proteomic approach to identify developmentally regulated proteins in Leishmania infantum. Proteomics 2(8):1007–1017

PubMed  Google Scholar 

Flórez AF, Park D, Bhak J, Kim B-C, Kuchinsky A, Morris JH, Espinosa J, Muskus C (2010) Protein network prediction and topological analysis in Leishmania major as a tool for drug target selection. BMC Bioinformat 11(1):484

Google Scholar 

Hajjaran H, Azarian B, Mohebali M, Hadighi R, Assareh A, Vaziri B (2012) Comparative proteomics study on meglumine antimoniate sensitive and resistant Leishmania tropica isolated from Iranian anthroponotic cutaneous leishmaniasis patients. East Mediterr Health J 18(2):165

CAS  PubMed  Google Scholar 

Hajjaran H, Bazargani MM, Mohebali M, Burchmore R, Salekdeh GH, Kazemi-Rad E, Khoramizadeh MR (2015) Comparison of the proteome profiling of iranian isolates of Leishmania tropica, L. major and L. infantum by two-dimensional electrophoresis (2-DE) and mass-spectrometry. Iranian J Parasitol 10(4):530

Google Scholar 

Hart D, Coombs GH (1982) Leishmania mexicana: energy metabolism of amastigotes and promastigotes. Exp Parasitol 54(3):397–409

CAS  PubMed  Google Scholar 

Jardim A, Funk V, Caprioli R, Olafson R (1995) Isolation and structural characterization of the Leishmania donovani kinetoplastid membrane protein-11, a major immunoreactive membrane glycoprotein. Biochem J 305(1):307–313

CAS  PubMed  PubMed Central  Google Scholar 

Jardim A, Hardie DB, Boitz J, Borchers CH (2018) Proteomic profiling of Leishmania donovani promastigote subcellular organelles. J Proteome Res 17(3):1194–1215

CAS  PubMed  Google Scholar 

Jeong H, Mason SP, Barabási A-L, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411(6833):41

CAS  PubMed  Google Scholar 

Kedzierski L, Sakthianandeswaren A, Curtis JM, Andrews PC, Junk PC, Kedzierska K (2009) Leishmaniasis: current treatment and prospects for new drugs and vaccines. Curr Med Chem 16(5):599–614

CAS  PubMed  Google Scholar 

Lahav T, Sivam D, Volpin H, Ronen M, Tsigankov P, Green A, Holland N, Kuzyk M, Borchers C, Zilberstein D (2011) Multiple levels of gene regulation mediate differentiation of the intracellular pathogen Leishmania. FASEB J 25(2):515–525

CAS  PubMed  PubMed Central  Google Scholar 

Martin E, Simon MW, Schaefer III FW, Mukkada AJ (1976) Enzymes of carbohydrate metabolism in four human species of Leishmania: a comparative survey. J Protozool 23(4):600–607

CAS  PubMed  Google Scholar 

Mazareb S, Fu ZY, Zilberstein D (1999) Developmental regulation of proline transport in Leishmania donovani. Exp Parasitol 91(4):341–348

CAS  PubMed  Google Scholar 

Menezes JPBd, Almeida TFd, Petersen ALdOA, Guedes CES, Mota M, Lima JGB, Palma LC, Buck GA, Krieger MA, Probst CM (2013) Proteomic analysis reveals differentially expressed proteins in macrophages infected with Leishmania amazonensis or Leishmania major. Microbes Infect 15(8–9):579–591

CAS  PubMed  Google Scholar 

Moreira W, Légaré D, Racine G, Roy G, Ouellette M (2014) Proteomic analysis of metacyclogenesis in Leishmania infantum wild-type and PTR1 null mutant. EuPA Open Proteom 4:171–183

CAS  Google Scholar 

Mottram JC, Coombs GH (1985) Leishmania mexicana: enzyme activities of amastigotes and promastigotes and their inhibition by antimonials and arsenicals. Exp Parasitol 59(2):151–160

CAS  PubMed  Google Scholar 

Mukhopadhyay S, Sen P, Majumder HK, Roy S (1998) Reduced expression of lipophosphoglycan (LPG) and kinetoplastid membrane protein (KMP)-11 in Leishmania donovani promastigotes in axenic culture. J parasitol 1:644–647

Google Scholar 

Mukkada AJ, Meade JC, Glaser TA, Bonventre PF (1985) Enhanced metabolism of Leishmania donovani amastigotes at acid pH: an adaptation for intracellular growth. Science 229(4718):1099–1101

CAS  PubMed  Google Scholar 

Naderer T, Ellis MA, Sernee MF, De Souza DP, Curtis J, Handman E, McConville MJ (2006) Virulence of Leishmania major in macrophages and mice requires the gluconeogenic enzyme fructose-1, 6-bisphosphatase. Proc Natl Acad Sci 103(14):5502–5507

CAS  PubMed  PubMed Central  Google Scholar 

Newman ME (2006) Finding community structure in networks using the eigenvectors of matrices. Phys Rev e: Stat Nonlin Soft Matter Phys 74(3 Pt 2):036104. https://doi.org/10.1103/PhysRevE.74.036104

Article  CAS  Google Scholar 

Nugent PG, Karsani SA, Wait R, Tempero J, Smith DF (2004) Proteomic analysis of Leishmania mexicana differentiation. Mol Biochem Parasitol 136(1):51–62

CAS  PubMed  Google Scholar 

Paape D, Barrios-Llerena ME, Le Bihan T, Mackay L, Aebischer T (2010) Gel free analysis of the proteome of intracellular Leishmania mexicana. Mol Biochem Parasitol 169(2):108–114

CAS  PubMed  Google Scholar 

Rosenzweig D, Smith D, Opperdoes F, Stern S, Olafson RW, Zilberstein D (2008) Retooling Leishmania metabolism: from sand fly gut to human macrophage. FASEB J 22(2):590–602

CAS  PubMed  Google Scholar 

Saxena A, Lahav T, Holland N, Aggarwal G, Anupama A, Huang Y, Volpin H, Myler P, Zilberstein D (2007) Analysis of the Leishmania donovani transcriptome reveals an ordered progression of transient and permanent changes in gene expression during differentiation. Mol Biochem Parasitol 152(1):53–65

CAS  PubMed  Google Scholar 

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

CAS  PubMed  PubMed Central  Google Scholar 

Sundar S, Singh B (2018) Understanding Leishmania parasites through proteomics and implications for the clinic. Expert Rev Proteomics 15(5):371–390

CAS  PubMed  PubMed Central  Google Scholar 

Zhu W, Smith JW, Huang C-M (2009) Mass spectrometry-based label-free quantitative proteomics. BioMed research international 2010

留言 (0)

沒有登入
gif