Personal exposure to PM2.5 oxidative potential and its association to birth outcomes

Yang Y, Ruan Z, Wang X, Yang Y, Mason TG, Lin H, et al. Short-term and long-term exposures to fine particulate matter constituents and health: a systematic review and meta-analysis. Environ Pollut. 2019;247:874–82.

CAS  PubMed  Google Scholar 

Sun X, Luo X, Zhao C, Zhang B, Tao J, Yang Z, et al. The associations between birth weight and exposure to fine particulate matter (PM2.5) and its chemical constituents during pregnancy: a meta-analysis. Environ Pollut. 2016;211:38–47.

CAS  PubMed  Google Scholar 

Pedersen M, Gehring U, Beelen R, Wang M, Giorgis-Allemand L, Andersen A-MN, et al. Elemental constituents of particulate matter and newborn’s size in eight European cohorts. Environ Health Perspect. 2016;124:141–50.

CAS  PubMed  Google Scholar 

Saffari A, Daher N, Shafer MM, Schauer JJ, Sioutas C. Global perspective on the oxidative potential of airborne particulate matter: a synthesis of research findings. Environ Sci Technol. 2014;48:7576–83.

CAS  PubMed  Google Scholar 

Bates JT, Fang T, Verma V, Zeng L, Weber RJ, Tolbert PE, et al. Review of acellular assays of ambient particulate matter oxidative potential: methods and relationships with composition, sources, and health effects. Environ Sci Technol. 2019;53:4003–19.

CAS  PubMed  Google Scholar 

Shi T, Knaapen AM, Begerow J, Birmili W, Borm PJA, Schins RPF. Temporal variation of hydroxyl radical generation and 8-hydroxy-2’-deoxyguanosine formation by coarse and fine particulate matter. Occup Environ Med. 2003;60:315–21.

CAS  PubMed  PubMed Central  Google Scholar 

Nel A. ATMOSPHERE: enhanced: air pollution-related illness: effects of particles. Science. 2005;308:804–6.

CAS  PubMed  Google Scholar 

Kelly FJ, Mudway IS. Protein oxidation at the air-lung interface. Amino Acids. 2003;25:375–96.

CAS  PubMed  PubMed Central  Google Scholar 

Mudway IS, Stenfors N, Duggan ST, Roxborough H, Zielinski H, Marklund SL, et al. An in vitro and in vivo investigation of the effects of diesel exhaust on human airway lining fluid antioxidants. Arch Biochem Biophys. 2004;423:200–12.

CAS  PubMed  Google Scholar 

Landreman AP, Shafer MM, Hemming JC, Hannigan MP, Schauer JJ. A Macrophage-Based Method for the Assessment of the Reactive Oxygen Species (ROS) Activity of Atmospheric Particulate Matter (PM) and Application to Routine (Daily-24 h) Aerosol Monitoring Studies. Aerosol Sci Technol. 2008;42:946–57.

CAS  Google Scholar 

Liu L, Urch B, Szyszkowicz M, Evans G, Speck M, Van Huang A, et al. Metals and oxidative potential in urban particulate matter influence systemic inflammatory and neural biomarkers: A controlled exposure study. Environ Int. 2018;121:1331–40.

CAS  PubMed  PubMed Central  Google Scholar 

Li J, Chen H, Li X, Wang M, Zhang X, Cao J, et al. Differing toxicity of ambient particulate matter (PM) in global cities. Atmos Environ. 2019;212:305–15.

CAS  Google Scholar 

Bates JT, Weber RJ, Abrams J, Verma V, Fang T, Klein M, et al. Reactive oxygen species generation linked to sources of atmospheric particulate matter and cardiorespiratory effects. Environ Sci Technol. 2015;49:13605–12.

CAS  PubMed  Google Scholar 

Weichenthal S, Crouse DL, Pinault L, Godri-Pollitt K, Lavigne E, Evans G, et al. Oxidative burden of fine particulate air pollution and risk of cause-specific mortality in the Canadian Census Health and Environment Cohort (CanCHEC). Environ Res. 2016;146:92–99.

CAS  PubMed  Google Scholar 

Zhang X, Staimer N, Tjoa T, Gillen DL, Schauer JJ, Shafer MM, et al. Associations between microvascular function and short-term exposure to traffic-related air pollution and particulate matter oxidative potential. Environ Health. 2016;15:81.

PubMed  PubMed Central  Google Scholar 

Weichenthal S, Lavigne E, Evans G, Pollitt K, Burnett RT. Ambient PM2.5 and risk of emergency room visits for myocardial infarction: impact of regional PM2.5 oxidative potential: a case-crossover study. Environ Health. 2016;15:46.

PubMed  PubMed Central  Google Scholar 

Abrams JY, Weber RJ, Klein M, Sarnat SE, Chang HH, Strickland MJ, et al. Associations between ambient fine particulate oxidative potential and cardiorespiratory emergency department visits. Environ Health Perspect. 2017;125:107008.

PubMed  PubMed Central  Google Scholar 

Gauvin S, Reungoat P, Cassadou S, Déchenaux J, Momas I, Just J, et al. Contribution of indoor and outdoor environments to PM2.5 personal exposure of children—VESTA study. Sci Total Environ. 2002;297:175–81.

CAS  PubMed  Google Scholar 

Brehmer C, Norris C, Barkjohn KK, Bergin MH, Zhang J, Cui X, et al. The impact of household air cleaners on the oxidative potential of PM2.5 and the role of metals and sources associated with indoor and outdoor exposure. Environ Res. 2020;181:108919.

CAS  PubMed  Google Scholar 

Chen X-C, Chuang H-C, Ward TJ, Sarkar C, Webster C, Cao J, et al. Toxicological effects of personal exposure to fine particles in adult residents of Hong Kong. Environ Pollut. 2021;275:116633.

CAS  PubMed  Google Scholar 

George S, Chua ML, ZheWei DZ, Das R, Bijin VA, Connolly JE, et al. Personal level exposure and hazard potential of particulate matter during haze and non-haze periods in Singapore. Chemosphere. 2020;243:125401.

PubMed  Google Scholar 

He L, Norris C, Cui X, Li Z, Barkjohn KK, Brehmer C, et al. Personal exposure to PM 2.5 oxidative potential in association with pulmonary pathophysiologic outcomes in children with asthma. Environ Sci Technol. 2021;55:3101–11.

CAS  PubMed  Google Scholar 

Shah PS, Balkhair T. Air pollution and birth outcomes: a systematic review. Environ Int. 2011;37:498–516.

CAS  PubMed  Google Scholar 

Tjoa ML, Cindrova-Davies T, Spasic-Boskovic O, Bianchi DW, Burton GJ. Trophoblastic oxidative stress and the release of cell-free feto-placental DNA. Am J Pathol. 2006;169:400–4.

CAS  PubMed  PubMed Central  Google Scholar 

Huang X, Liu Z, Liu J, Hu B, Wen T, Tang G et al. Chemical characterization and synergetic source apportionment of PM2.5 at multiple sites in the Beijing–Tianjin–Hebei region, China. Atmos Chem Phys Discuss. 2017;17:1–34.

Rashid CS, Bansal A, Simmons RA. Oxidative stress, intrauterine growth restriction, and developmental programming of type 2 diabetes. Physiology. 2018;33:348–59.

CAS  PubMed  PubMed Central  Google Scholar 

Saenen ND, Martens DS, Neven KY, Alfano R, Bové H, Janssen BG, et al. Air pollution-induced placental alterations: an interplay of oxidative stress, epigenetics, and the aging phenotype? Clin Epigenet. 2019;11:124.

CAS  Google Scholar 

Duhig K, Chappell LC, Shennan AH. Oxidative stress in pregnancy and reproduction. Obstet Med. 2016;9:113–6.

PubMed  PubMed Central  Google Scholar 

Lavigne É, Burnett RT, Stieb DM, Evans GJ, Godri Pollitt KJ, Chen H, et al. Fine particulate air pollution and adverse birth outcomes: effect modification by regional nonvolatile oxidative potential. Environ Health Perspect. 2018;126:077012.

PubMed  PubMed Central  Google Scholar 

Mostofsky E, Schwartz J, Coull BA, Koutrakis P, Wellenius GA, Suh HH, et al. Modeling the association between particle constituents of air pollution and health outcomes. Am J Epidemiol. 2012;176:317–26.

PubMed  PubMed Central  Google Scholar 

Borlaza LJS, Weber S, Jaffrezo J-L, Houdier S, Slama R, Rieux C, et al. Disparities in particulate matter (PM<sub>10</sub>) origins and oxidative potential at a city scale (Grenoble, France) – Part 2: Sources of PM<sub>10</sub> oxidative potential using multiple linear regression analysis and the predictive applicability of multilayer perceptron neural network analysis. Atmos Chem Phys. 2021;21:9719–39.

CAS  Google Scholar 

Borlaza LJS, Weber S, Uzu G, Jacob V, Cañete T, Micallef S, et al. Disparities in particulate matter (PM<sub>10</sub>) origins and oxidative potential at a city scale (Grenoble, France) – Part 1: Source apportionment at three neighbouring sites. Atmos Chem Phys. 2021;21:5415–37.

CAS  Google Scholar 

INSEE. Naissances de 2014 à 2020. Institut national de la statistique et des études économiques: France https://www.insee.fr/fr/statistiques/1893255 (accessed 22 Sep 2020).

Calas A, Uzu G, Martins JMF, Voisin D, Spadini L, Lacroix T, et al. The importance of simulated lung fluid (SLF) extractions for a more relevant evaluation of the oxidative potential of particulate matter. Sci Rep. 2017;7:11617.

PubMed  PubMed Central  Google Scholar 

Cho AK, Sioutas C, Miguel AH, Kumagai Y, Schmitz DA, Singh M, et al. Redox activity of airborne particulate matter at different sites in the Los Angeles Basin. Environ Res. 2005;99:40–47.

CAS  PubMed  Google Scholar 

van Buuren S. Multiple imputation of discrete and continuous data by fully conditional specification. Stat Methods Med Res. 2007;16:219–42.

PubMed  Google Scholar 

Pedersen M, Giorgis-Allemand L, Bernard C, Aguilera I, Andersen A-MN, Ballester F, et al. Ambient air pollution and low birthweight: a European cohort study (ESCAPE). Lancet Respiratory Med. 2013;1:695–704.

CAS  Google Scholar 

Ouidir M, Seyve E, Rivière E, Bernard J, Cheminat M, Cortinovis J, et al. Maternal ambient exposure to atmospheric pollutants during pregnancy and offspring term birth weight in the nationwide ELFE cohort. IJERPH. 2021;18:5806.

CAS  PubMed  PubMed Central  Google Scholar 

Bell ML, Ebisu K, Belanger K. Ambient air pollution and low birth weight in Connecticut and Massachusetts. Environ Health Perspect. 2007;115:1118–24.

CAS  PubMed  PubMed Central  Google Scholar 

Fossati S, Valvi D, Martinez D, Cirach M, Estarlich M, Fernández-Somoano A, et al. Prenatal air pollution exposure and growth and cardio-metabolic risk in preschoolers. Environ Int. 2020;138:105619.

CAS  PubMed  Google Scholar 

Fu L, Chen Y, Yang X, Yang Z, Liu S, Pei L, et al. The associations of air pollution exposure during pregnancy with fetal growth and anthropometric measurements at birth: a systematic review and meta-analysis. Environ Sci Pollut Res. 2019;26:20137–47.

CAS  Google Scholar 

Jedrychowski W, Bendkowska I, Flak E, Penar A, Jacek R, Kaim I, et al. Estimated risk for altered fetal growth resulting from exposure to fine particles during pregnancy: an epidemiologic prospective cohort study in Poland. Environ Health Perspect. 2004;112:1398–402.

PubMed  PubMed Central  Google Scholar 

U.S. EPA. Air Quality Criteria for Particulate Matter. Fourth External Review Draft. U.S. Environmental Protection Agency: Washington D.C., 2003.

Kannan S, Misra DP, Dvonch JT, Krishnakumar A. Exposures to airborne particulate matter and adverse perinatal outcomes: a biologically plausible mechanistic framework for exploring potential effect modification by nutrition. Environ Health Perspect. 2006;114:1636–42.

CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif