Characterization and stabilization of the α-L-fucosidase set from Lacticaseibacillus rhamnosus INIA P603

Becker DJ, Lowe JB (2003) Fucose: biosynthesis and biological function in mammals. Glycobiology 13:41R-53R. https://doi.org/10.1093/glycob/cwg054

Article  CAS  PubMed  Google Scholar 

Curiel JA, Rodríguez H, Acebrón I, Mancheño JM, De Las RB, Muñoz R (2009) Production and physicochemical properties of recombinant Lactobacillus plantarum tannase. J Agric Food Chem 57(14):6224–6230. https://doi.org/10.1021/jf901045s

Article  CAS  PubMed  Google Scholar 

Curiel JA, Peirotén Á, Landete JM, Ruiz de la Bastida A, Langa S, Arqués JL (2021) Architecture insight of bifidobacterial α-L-fucosidases. Int J Mol Sci 22:8462. https://doi.org/10.3390/ijms22168462

Article  CAS  PubMed  PubMed Central  Google Scholar 

Del Pino-García R, Porrelli A, Rus-Fernández P, Segura-Carretero A, Curiel JA (2020) Identification, purification and characterization of a novel glycosidase (BgLm1) from Leuconostoc mesenteroides. LWT 122:108829. https://doi.org/10.1016/j.lwt.2019.108829

Article  CAS  Google Scholar 

Escamilla-Lozano Y, Guzmán-Rodríguez F, Alatorre-Santamaría S, García-Garibay M, Gómez-Ruiz L, Rodríguez-Serrano G, Cruz-Guerrero A (2019) Synthesis of fucosyl-oligosaccharides using α-L-fucosidase from Lactobacillus rhamnosus GG. Molecules 24:2402. https://doi.org/10.3390/molecules24132402

Article  CAS  PubMed Central  Google Scholar 

Fernández-Lorente G, Bolívar JM, Rocha-Martin J, Curiel JA, Muñoz R, de Las RB, Carrascosa A, Guisan JM (2011) Synthesis of propyl gallate by transesterification of tannic acid in aqueous media catalysed by immobilised derivatives of tannase from Lactobacillus plantarum. Food Chem 128:214–217. https://doi.org/10.1016/j.foodchem.2011.02.057

Article  CAS  PubMed  Google Scholar 

Landete JM, Curiel JA, Rodríguez H, de las Rivas B, Muñoz R, (2014) Aryl glycosidases from Lactobacillus plantarum increase antioxidant activity of phenolic compounds. J Funct Foods 7:322–329. https://doi.org/10.1016/j.jff.2014.01.028

Article  CAS  Google Scholar 

Li T, Li M, Hou L, Guo Y, Wang L, Sun G, Chen L (2018) Identification and characterization of a core fucosidase from the bacterium Elizabethkingia meningoseptica. J Biol Chem 293:1243–1258. https://doi.org/10.1074/jbc.M117.804252

Article  CAS  PubMed  Google Scholar 

Mateo C, Bolivar JM, Godoy CA, Rocha-Martin J, Pessela BC, Curiel JA, Muñoz R, Fernández-Lorente GJM, G, (2010) Improvement of enzyme properties with a two-step immobilizaton process on novel heterofunctional supports. Biomacromol 11(11):3112–3117. https://doi.org/10.1021/bm100916r

Article  CAS  Google Scholar 

Rodríguez-Díaz J, Monedero V, Yebra MJ (2011) Utilization of natural fucosylated oligosaccharides by three novel α-l-fucosidases from a probiotic Lactobacillus casei strain. Appl Environ Microbiol 77:703–705. https://doi.org/10.1128/AEM.01906-10

Article  CAS  PubMed  Google Scholar 

Rodríguez-Díaz J, Rubio-del-Campo A, Yebra MJ (2012) Lactobacillus casei ferments the N-acetylglucosamine moiety of fucosyl-alpha-1,3-N-acetylglucosamine and excretes L-fucose. Appl Environ Microbiol 78:4613–4619. https://doi.org/10.1128/AEM.00474-12

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rodríguez-Díaz J, Carbajo RJ, Pineda-Lucena A, Monedero V, Yebra MJ (2013) Synthesis of fucosyl-N-acetylglucosamine disaccharides by transfucosylation using α-L-fucosidases from Lactobacillus casei. Appl Environ Microbiol 79:3847–3850. https://doi.org/10.1128/AEM.00229-13

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rozès N, Peres C (1998) Effects of phenolic compounds on the growth and the fatty acid composition of Lactobacillus plantarum. Appl Microbiol Biotechnol 49:108–111. https://doi.org/10.1007/s002530051145

Article  Google Scholar 

Salli K, Hirvonen J, Siitonen J, Ahonen I, Anglenius H, Maukonen J (2021) Selective utilization of the human milk oligosaccharides 2′-fucosyllactose, 3-fucosyllactose, and difucosyllactose by various probiotic and pathogenic bacteria. J Agric Food Chem 69:170–182. https://doi.org/10.1021/acs.jafc.0c06041

Article  CAS  PubMed  Google Scholar 

Shi R, Ma J, Yan Q, Yang S, Fan Z, Jiang Z (2020) Biochemical characterization of a novel α-L-fucosidase from Pedobacter sp. and its application in synthesis of 3′-fucosyllactose and 2′-fucosyllactose. Appl Microbiol Biotechnol 104:5813–5826. https://doi.org/10.1007/s00253-020-10630-y

Article  CAS  PubMed  Google Scholar 

Verkhnyatskaya SA, Kong C, Klostermann CE, Schols HA, De Vos P, Walvoort MT (2021) Digestion, fermentation, and pathogen anti-adhesive properties of the hMO-mimic di-fucosyl-β-cyclodextrin. Food Funct 12:5018–5026. https://doi.org/10.1039/D1FO00830G

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang X, Mushajiang S, Luo B, Tian F, Ni Y, Yan W (2020) The composition and concordance of lactobacillus populations of infant gut and the corresponding breast-milk and maternal gut. Front Microbiol 2985. https://doi.org/10.3389/fmicb.2020.5

Zhou W, Jiang H, Wang L, Liang X, Mao X (2021) Biotechnological production of 2′-fucosyllactose: a prevalent fucosylated human milk oligosaccharide. ACS Synth Biol 10(3):447–458. https://doi.org/10.1021/acssynbio.0c00645

Article  CAS  PubMed  Google Scholar 

Zhu Y, Wan L, Li W, Ni D, Zhang W, Yan X, Mu W (2022). Recent advances on 2′-fucosyllactose: physiological properties, applications, and production approaches. Crit Rev Food Sci Nutr 62(8):2083–2092. 97911. https://doi.org/10.1080/10408398.2020.1850413

Zúñiga M, Monedero V, Yebra MJ (2018) Utilization of host-derived glycans by intestinal Lactobacillus and Bifidobacterium species. Front Microbiol 1917. https://doi.org/10.3389/fmicb.2018.01917

留言 (0)

沒有登入
gif