Involvement of Ca2+ in Signaling Mechanisms Mediating Muscarinic Inhibition of M Currents in Sympathetic Neurons

Aiken SP, Zaczek R, Brown BS (1996) Pharmacology of the neurotransmitter release enhancer linopirdine (DuP 996), and insights into its mechanism of action. Adv Pharmacol 35:349–384. https://doi.org/10.1016/s1054-3589(08)60281-1

Article  CAS  PubMed  Google Scholar 

Allbritton NL, Meyer T, Stryer L (1992) Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science 258(5089):1812–1815. https://doi.org/10.1126/science.1465619

Article  CAS  PubMed  Google Scholar 

Beech DJ, Bernheim L, Mathie A, Hille B (1991) Intracellular Ca2+ buffers disrupt muscarinic suppression of Ca2+ current and M current in rat sympathetic neurons. Proc Natl Acad Sci USA 88(2):652–656. https://doi.org/10.1073/pnas.88.2.652

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bofill-Cardona E, Vartian N, Nanoff C, Freissmuth M, Boehm S (2000) Two different signaling mechanisms involved in the excitation of rat sympathetic neurons by uridine nucleotides. Mol Pharmacol 57(6):1165–1172

CAS  PubMed  Google Scholar 

Bosma MM, Hille B (1989) Protein kinase C is not necessary for peptide-induced suppression of M current or for desensitization of the peptide receptors. Proc Natl Acad Sci USA 86(8):2943–2947. https://doi.org/10.1073/pnas.86.8.2943

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brown DA, Adams PR (1980) Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone. Nature 283(5748):673–676. https://doi.org/10.1038/283673a0

Article  CAS  PubMed  Google Scholar 

Brown BS, Yu SP (2000) Modulation and genetic identification of the M channel. Prog Biophys Mol Biol 73(2–4):135–166. https://doi.org/10.1016/s0079-6107(00)00004-3

Article  CAS  PubMed  Google Scholar 

Brown SG, Thomas A, Dekker LV, Tinker A, Leaney JL (2005) PKC-delta sensitizes Kir3.1/3.2 channels to changes in membrane phospholipid levels after M3 receptor activation in HEK-293 cells. Am J Physiol Cell Physiol 289(3):C543-556. https://doi.org/10.1152/ajpcell.00025.2005

Article  CAS  PubMed  Google Scholar 

Burgoyne RD, Weiss JL (2001) The neuronal calcium sensor family of Ca2+-binding proteins. Biochem J 353(Pt 1):1–12

Article  CAS  PubMed  PubMed Central  Google Scholar 

Caulfield MP, Jones S, Vallis Y, Buckley NJ, Kim GD, Milligan G, Brown DA (1994) Muscarinic M-current inhibition via G alpha q/11 and alpha-adrenoceptor inhibition of Ca2+ current via G alpha o in rat sympathetic neurones. J Physiol 477(Pt 3):415–422. https://doi.org/10.1113/jphysiol.1994.sp020203

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cho H, Nam GB, Lee SH, Earm YE, Ho WK (2001) Phosphatidylinositol 4,5-bisphosphate is acting as a signal molecule in alpha(1)-adrenergic pathway via the modulation of acetylcholine-activated K(+) channels in mouse atrial myocytes. J Biol Chem 276(1):159–164. https://doi.org/10.1074/jbc.M004826200

Article  CAS  PubMed  Google Scholar 

Cho H, Lee D, Lee SH, Ho WK (2005) Receptor-induced depletion of phosphatidylinositol 4,5-bisphosphate inhibits inwardly rectifying K+ channels in a receptor-specific manner. Proc Natl Acad Sci USA 102(12):4643–4648. https://doi.org/10.1073/pnas.0408844102

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cho H, Kim YA, Ho WK (2006) Phosphate number and acyl chain length determine the subcellular location and lateral mobility of phosphoinositides. Mol Cells 22(1):97–103

CAS  PubMed  Google Scholar 

Choveau FS, De la Rosa V, Bierbower SM, Hernandez CC, Shapiro MS (2018) Phosphatidylinositol 4,5-bisphosphate (PIP2) regulates KCNQ3 K(+) channels by interacting with four cytoplasmic channel domains. J Biol Chem 293(50):19411–19428. https://doi.org/10.1074/jbc.RA118.005401

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chung HJ, Qian X, Ehlers M, Jan YN, Jan LY (2009) Neuronal activity regulates phosphorylation-dependent surface delivery of G protein-activated inwardly rectifying potassium channels. Proc Natl Acad Sci USA 106(2):629–634. https://doi.org/10.1073/pnas.0811615106

Article  PubMed  Google Scholar 

Constanti A, Brown DA (1981) M-Currents in voltage-clamped mammalian sympathetic neurones. Neurosci Lett 24(3):289–294. https://doi.org/10.1016/0304-3940(81)90173-7

Article  CAS  PubMed  Google Scholar 

Cooper EC, Jan LY (2003) M-channels: neurological diseases, neuromodulation, and drug development. Arch Neurol 60(4):496–500. https://doi.org/10.1001/archneur.60.4.496

Article  PubMed  Google Scholar 

Cruzblanca H, Koh DS, Hille B (1998) Bradykinin inhibits M current via phospholipase C and Ca2+ release from IP3-sensitive Ca2+ stores in rat sympathetic neurons. Proc Natl Acad Sci USA 95(12):7151–7156. https://doi.org/10.1073/pnas.95.12.7151

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cui S, Ho WK, Kim ST, Cho H (2010) Agonist-induced localization of Gq-coupled receptors and G protein-gated inwardly rectifying K+ (GIRK) channels to caveolae determines receptor specificity of phosphatidylinositol 4,5-bisphosphate signaling. J Biol Chem 285(53):41732–41739. https://doi.org/10.1074/jbc.M110.153312

Article  CAS  PubMed  PubMed Central  Google Scholar 

del Rio E, Bevilacqua JA, Marsh SJ, Halley P, Caulfield MP (1999) Muscarinic M1 receptors activate phosphoinositide turnover and Ca2+ mobilisation in rat sympathetic neurones, but this signalling pathway does not mediate M-current inhibition. J Physiol 520(Pt 1):101–111. https://doi.org/10.1111/j.1469-7793.1999.00101.x

Article  PubMed  PubMed Central  Google Scholar 

Delmas P, Brown DA (2002) Junctional signaling microdomains: bridging the gap between the neuronal cell surface and Ca2+ stores. Neuron 36(5):787–790. https://doi.org/10.1016/s0896-6273(02)01097-8

Article  CAS  PubMed  Google Scholar 

Delmas P, Brown DA (2005) Pathways modulating neural KCNQ/M (Kv7) potassium channels. Nat Rev Neurosci 6(11):850–862. https://doi.org/10.1038/nrn1785

Article  CAS  PubMed  Google Scholar 

Delmas P, Wanaverbecq N, Abogadie FC, Mistry M, Brown DA (2002) Signaling microdomains define the specificity of receptor-mediated InsP(3) pathways in neurons. Neuron 34(2):209–220. https://doi.org/10.1016/s0896-6273(02)00641-4

Article  CAS  PubMed  Google Scholar 

Di Paolo G, De Camilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443(7112):651–657. https://doi.org/10.1038/nature05185

Article  CAS  PubMed  Google Scholar 

Dickson EJ, Falkenburger BH, Hille B (2013) Quantitative properties and receptor reserve of the IP(3) and calcium branch of G(q)-coupled receptor signaling. J Gen Physiol 141(5):521–535. https://doi.org/10.1085/jgp.201210886

Article  CAS  PubMed  PubMed Central  Google Scholar 

Etxeberria A, Aivar P, Rodriguez-Alfaro JA, Alaimo A, Villace P, Gomez-Posada JC, Areso P, Villarroel A (2008) Calmodulin regulates the trafficking of KCNQ2 potassium channels. FASEB J 22(4):1135–1143. https://doi.org/10.1096/fj.07-9712com

Article  CAS  PubMed  Google Scholar 

Falkenburger BH, Dickson EJ, Hille B (2013) Quantitative properties and receptor reserve of the DAG and PKC branch of G(q)-coupled receptor signaling. J Gen Physiol 141(5):537–555. https://doi.org/10.1085/jgp.201210887

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ford CP, Stemkowski PL, Light PE, Smith PA (2003) Experiments to test the role of phosphatidylinositol 4,5-bisphosphate in neurotransmitter-induced M-channel closure in bullfrog sympathetic neurons. J Neurosci 23(12):4931–4941

Article  CAS  PubMed  PubMed Central  Google Scholar 

Foucart S, Gibbons SJ, Brorson JR, Miller RJ (1995) Increase in [Ca2+]i by CCh in adult rat sympathetic neurons are not dependent on intracellular Ca2+ pools. Am J Physiol 268(4 Pt 1):C829-837. https://doi.org/10.1152/ajpcell.1995.268.4.C829

Article  CAS  PubMed  Google Scholar 

Gamper N, Shapiro MS (2003) Calmodulin mediates Ca2+-dependent modulation of M-type K+ channels. J Gen Physiol 122(1):17–31. https://doi.org/10.1085/jgp.200208783

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gamper N, Reznikov V, Yamada Y, Yang J, Shapiro MS (2004) Phosphatidylinositol [correction] 4,5-bisphosphate signals underlie receptor-specific Gq/11-mediated modulation of N-type Ca2+ channels. J Neurosci 24(48):10980–10992. https://doi.org/10.1523/JNEUROSCI.3869-04.2004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gamper N, Li Y, Shapiro MS (2005) Structural requirements for differential sensitivity of KCNQ K+ channels to modulation by Ca2+/calmodulin. Mol Biol Cell 16(8):3538–3551. https://doi.org/10.1091/mbc.e04-09-0849

Article  CAS  PubMed  PubMed Central  Google Scholar 

Geiser JR, van Tuinen D, Brockerhoff SE, Neff MM, Davis TN (1991) Can calmodulin function without binding calcium? Cell 65(6):949–959. https://doi.org/10.1016/0092-8674(91)90547-c

Article  CAS  PubMed  Google Scholar 

Grundy D (2015) Principles and standards for reporting animal experiments in the journal of physiology and experimental physiology. J Physiol 593(12):2547–2549. https://doi.org/10.1113/JP270818

留言 (0)

沒有登入
gif