The landscape of mRNA nanomedicine

Sharp, P. A. The centrality of RNA. Cell 136, 577–580 (2009).

Article  CAS  PubMed  Google Scholar 

Sahin, U., Kariko, K. & Tureci, O. mRNA-based therapeutics—developing a new class of drugs. Nat. Rev. Drug Discov. 13, 759–780 (2014).

Article  CAS  PubMed  Google Scholar 

Xiao, Y. et al. Emerging mRNA technologies: delivery strategies and biomedical applications. Chem. Soc. Rev. 51, 3828–3845 (2022).

Article  CAS  PubMed  Google Scholar 

Emiliano, B. et al. RNA cancer nanomedicine: nanotechnology-mediated RNA therapy. Nanoscale 14, 4448–4455 (2022).

Article  Google Scholar 

Langer, R. & Folkman, J. Polymers for the sustained release of proteins and other macromolecules. Nature 263, 797–800 (1976).

Article  CAS  PubMed  Google Scholar 

Langer, R. Controlling the movement of molecules. Q. Rev. Biophys. 52, e5 (2019).

Article  Google Scholar 

Ostro, M. J., Giacomoni, D., Lavelle, D. O. N., Paxton, W. & Dray, S. Evidence for translation of rabbit globin mRNA after liposomemediated insertion into a human cell line. Nature 274, 921–923 (1978).

Article  CAS  PubMed  Google Scholar 

Dimitriadis, G. J. Translation of rabbit globin mRNA introduced by liposomes into mouse lymphocytes. Nature 274, 923–924 (1978).

Article  CAS  PubMed  Google Scholar 

Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hajj, K. A. & Whitehead, K. A. Tools for translation: non-viral materials for therapeutic mRNA delivery. Nat. Rev. Mater. 2, 17056 (2017).

Article  CAS  Google Scholar 

Karikó, K., Buckstein, M., Ni, H. & Weissman, D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23, 165–175 (2005).

Article  PubMed  Google Scholar 

Lutz, J. et al. Unmodified mRNA in LNPs constitutes a competitive technology for prophylactic vaccines. NPJ Vaccines 2, 29 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Thess, A. et al. Sequence-engineered mRNA without chemical nucleoside modifications enables an effective protein therapy in large animals. Mol. Ther. 23, 1456–1464 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karikó, K., Muramatsu, H., Ludwig, J. & Weissman, D. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res. 39, e142 (2011).

Article  PubMed  PubMed Central  Google Scholar 

Pardi, N., Hogan, M. J., Porter, F. W. & Weissman, D.mRNA vaccines—a new era in vaccinology. Nat. Rev. Drug Discov. 17, 261–279 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).

Article  CAS  PubMed  Google Scholar 

Gupta, A., Andresen, J. L., Manan, R. S. & Langer, R. Nucleic acid delivery for therapeutic applications. Adv. Drug Deliv. Rev. 178, 113834 (2021).

Article  CAS  PubMed  Google Scholar 

Granot, Y. & Peer, D. Delivering the right message: challenges and opportunities in lipid nanoparticles-mediated modified mRNA therapeutics—an innate immune system standpoint. Semin. Immunol. 34, 68–77 (2017).

Article  CAS  PubMed  Google Scholar 

Patel, A. K. et al. Inhaled nanoformulated mRNA polyplexes for protein production in lung epithelium. Adv. Mater. 31, 1805116 (2019).

Article  Google Scholar 

Moffett, H. F. et al. Hit-and-run programming of therapeutic cytoreagents using mRNA nanocarriers. Nat. Commun. 8, 389 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kong, N. et al. Synthetic mRNA nanoparticle-mediated restoration of p53 tumor suppressor sensitizes p53-deficient cancers to mTOR inhibition. Sci. Transl. Med. 11, eaaw1565 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Islam, M. A. et al. Restoration of tumour-growth suppression in vivo via systemic nanoparticle-mediated delivery of PTEN mRNA. Nat. Biomed. Eng. 2, 850–864 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kong, N. et al. Intravesical delivery of KDM6A-mRNA via mucoadhesive nanoparticles inhibits the metastasis of bladder cancer. Proc. Natl Acad. Sci. USA 119, e2112696119 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kowalski, P. S., Rudra, A., Miao, L. & Anderson, D. G. Delivering the messenger: advances in technologies for therapeutic mRNA delivery. Mol. Ther. 27, 710–728 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baden, L. R. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2021).

Article  CAS  PubMed  Google Scholar 

Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).

Article  CAS  PubMed  Google Scholar 

Huang, X. et al. Nanotechnology-based strategies against SARS-CoV-2 variants. Nat. Nanotechnol. https://doi.org/10.1038/s41565-022-01174-5 (2022).

Tang, Z. et al. Insights from nanotechnology in COVID-19 treatment. Nano Today 36, 101019 (2021).

Article  CAS  PubMed  Google Scholar 

Tang, Z. et al. A materials-science perspective on tackling COVID-19. Nat. Rev. Mater. 5, 847–860 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pardi, N., Muramatsu, H., Weissman, D. & Karikó, K. in Synthetic Messenger RNA and Cell Metabolism Modulation: Methods and Protocols (ed. Rabinovich, P. M.) 29–42 (Humana Press, 2013).

Rosa, S. S., Prazeres, D. M. F., Azevedo, A. M. & Marques, M. P. C. mRNA vaccines manufacturing: challenges and bottlenecks. Vaccine 39, 2190–2200 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tsui, N. B., Ng, E. K. & Lo, Y. D. J. C. C. Stability of endogenous and added RNA in blood specimens, serum, and plasma. Clin. Chem. 48, 1647–1653 (2002).

Article  CAS  PubMed  Google Scholar 

McKinlay, C. J. et al. Charge-altering releasable transporters (CARTs) for the delivery and release of mRNA in living animals. Proc. Natl Acad. Sci. USA 114, E448–E456 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kawai, T. & Akira, S. Innate immune recognition of viral infection. Nat. Immunol. 7, 131–137 (2006).

Article  CAS  PubMed  Google Scholar 

Lee, B. L. & Barton, G. M. Trafficking of endosomal Toll-like receptors. Trends Cell Biol. 24, 360–369 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Devoldere, J., Dewitte, H., De Smedt, S. C. & Remaut, K. Evading innate immunity in nonviral mRNA delivery: don’t shoot the messenger. Drug Discov. Today 21, 11–25 (2016).

Article  CAS  PubMed  Google Scholar 

García, M. A., Meurs, E. F. & Esteban, M. The dsRNA protein kinase PKR: virus and cell control. Biochimie 89, 799–811 (2007).

Article  PubMed  Google Scholar 

Anderson, B. R. et al. Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res. 38, 5884–5892 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Silverman, R. H. Viral encounters with 2′,5′-oligoadenylate synthetase and RNAse l during the interferon antiviral response. J. Virol. 81, 12720–12729 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

George, C. X., John, Lijo & Samuel, C. E. An RNA editor, adenosine deaminase acting on double-stranded RNA (ADAR1). J. Interferon Cytokine Res. 34, 437–446 (2014).

留言 (0)

沒有登入
gif