Artificial intelligence-based computer-aided system for knee osteoarthritis assessment increases experienced orthopaedic surgeons’ agreement rate and accuracy

Feigin V (2016) Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388:1545–1602

Article  Google Scholar 

Cui A, Li H, Wang D, Zhong J, Chen Y, Lu H (2020) Global, regional prevalence, incidence and risk factors of knee osteoarthritis in population-based studies. EClinicalMedicine 29–30:100587

Article  PubMed  PubMed Central  Google Scholar 

Litwic A, Edwards MH, Dennison EM, Cooper C (2013) Epidemiology and burden of osteoarthritis. Br Med Bull 105:185–199

Article  PubMed  Google Scholar 

Kellgren JH, Lawrence JS (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16:494–502

Article  CAS  PubMed  PubMed Central  Google Scholar 

Spector TD, Cooper C (1993) Radiographic assessment of osteoarthritis in population studies: whither Kellgren and Lawrence? Osteoarthr Cartil 1:203–206

Article  CAS  Google Scholar 

Schiphof D, de Klerk BM, Kerkhof HJ, Hofman A, Koes BW, Boers M et al (2011) Impact of different descriptions of the Kellgren and Lawrence classification criteria on the diagnosis of knee osteoarthritis. Ann Rheum Dis 70:1422–1427

Article  CAS  PubMed  Google Scholar 

Altman RD, Gold GE (2007) Atlas of individual radiographic features in osteoarthritis, revised. Osteoarthr Cartil 15(Suppl A):A1–A56

Article  Google Scholar 

Tiulpin A, Thevenot J, Rahtu E, Lehenkari P, Saarakkala S (2018) Automatic knee osteoarthritis diagnosis from plain radiographs: a deep learning-based approach. Sci Rep 8:1727

Article  PubMed  PubMed Central  Google Scholar 

Culvenor AG, Engen CN, Oiestad BE, Engebretsen L, Risberg MA (2015) Defining the presence of radiographic knee osteoarthritis: a comparison between the Kellgren and Lawrence system and OARSI atlas criteria. Knee Surg Sports Traumatol Arthrosc 23:3532–3539

Article  PubMed  Google Scholar 

Gossec L, Jordan JM, Mazzuca SA, Lam MA, Suarez-Almazor ME, Renner JB et al (2008) Comparative evaluation of three semi-quantitative radiographic grading techniques for knee osteoarthritis in terms of validity and reproducibility in 1759 X-rays: report of the OARSI-OMERACT task force. Osteoarthr Cartil 16:742–748

Article  CAS  Google Scholar 

Sheehy L, Culham E, McLean L, Niu J, Lynch J, Segal NA et al (2015) Validity and sensitivity to change of three scales for the radiographic assessment of knee osteoarthritis using images from the Multicenter Osteoarthritis Study (MOST). Osteoarthr Cartil 23:1491–1498

Article  CAS  Google Scholar 

Damen J, Schiphof D, Wolde ST, Cats HA, Bierma-Zeinstra SM, Oei EH (2014) Inter-observer reliability for radiographic assessment of early osteoarthritis features: the CHECK (cohort hip and cohort knee) study. Osteoarthr Cartil 22:969–974

Article  CAS  Google Scholar 

Kinds MB, Welsing PM, Vignon EP, Bijlsma JW, Viergever MA, Marijnissen AC et al (2011) A systematic review of the association between radiographic and clinical osteoarthritis of hip and knee. Osteoarthr Cartil 19:768–778

Article  CAS  Google Scholar 

Schiphof D, Boers M, Bierma-Zeinstra SM (2008) Differences in descriptions of Kellgren and Lawrence grades of knee osteoarthritis. Ann Rheum Dis 67:1034–1036

Article  CAS  PubMed  Google Scholar 

Chung SW, Han SS, Lee JW, Oh KS, Kim NR, Yoon JP et al (2018) Automated detection and classification of the proximal humerus fracture by using deep learning algorithm. Acta Orthop 89:468–473

Article  PubMed  PubMed Central  Google Scholar 

Olczak J, Fahlberg N, Maki A, Razavian AS, Jilert A, Stark A et al (2017) Artificial intelligence for analyzing orthopedic trauma radiographs. Acta Orthop 88:581–586

Article  PubMed  PubMed Central  Google Scholar 

Simon S, Schwarz GM, Aichmair A, Frank BJH, Hummer A, DiFranco MD et al (2021) Fully automated deep learning for knee alignment assessment in lower extremity radiographs: a cross-sectional diagnostic study. Skeletal Radiol. https://doi.org/10.1007/s00256-021-03948-9

Article  PubMed  Google Scholar 

van Leeuwen KG, Schalekamp S, Rutten M, van Ginneken B, de Rooij M (2021) Artificial intelligence in radiology: 100 commercially available products and their scientific evidence. Eur Radiol 31:3797–3804

Article  PubMed  PubMed Central  Google Scholar 

Nehrer S, Ljuhar R, Steindl P, Simon R, Maurer D, Ljuhar D et al (2021) Automated knee osteoarthritis assessment increases physicians’ agreement rate and accuracy: data from the osteoarthritis initiative. Cartilage 13:957s–965s

Article  PubMed  Google Scholar 

The Osteoarthritis Initiative. https://nda.nih.gov/oai/. Accessed 23.04.2019.

Brejnebøl MW, Hansen P, Nybing JU, Bachmann R, Ratjen U, Hansen IV et al (2022) External validation of an artificial intelligence tool for radiographic knee osteoarthritis severity classification. Eur J Radiol 150:110249

Article  PubMed  Google Scholar 

Mutasa S, Sun S, Ha R (2020) Understanding artificial intelligence based radiology studies: what is overfitting? Clin Imaging 65:96–99

Article  PubMed  PubMed Central  Google Scholar 

Kothari M, Guermazi A, von Ingersleben G, Miaux Y, Sieffert M, Block JE et al (2004) Fixed-flexion radiography of the knee provides reproducible joint space width measurements in osteoarthritis. Eur Radiol 14:1568–1573

Article  PubMed  Google Scholar 

Niinimäki T, Ojala R, Niinimäki J, Leppilahti J (2010) The standing fixed flexion view detects narrowing of the joint space better than the standing extended view in patients with moderate osteoarthritis of the knee. Acta Orthop 81:344–346

Article  PubMed  PubMed Central  Google Scholar 

Peterfy C, Li J, Zaim S, Duryea J, Lynch J, Miaux Y et al (2003) Comparison of fixed-flexion positioning with fluoroscopic semi-flexed positioning for quantifying radiographic joint-space width in the knee: test-retest reproducibility. Skeletal Radiol 32:128–132

Article  CAS  PubMed  Google Scholar 

Labelbox. https://labelbox.com/. Accessed 7.5.2019, 2019.

Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86:420–428

Article  CAS  PubMed  Google Scholar 

Cicchetti DV (1994) Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology, vol 6. American Psychological Association, US, pp 284–290

Google Scholar 

Guermazi A, Hunter DJ, Li L, Benichou O, Eckstein F, Kwoh CK et al (2012) Different thresholds for detecting osteophytes and joint space narrowing exist between the site investigators and the centralized reader in a multicenter knee osteoarthritis study–data from the Osteoarthritis Initiative. Skeletal Radiol 41:179–186

Article  PubMed  Google Scholar 

Felson DT, Niu J, Guermazi A, Sack B, Aliabadi P (2011) Defining radiographic incidence and progression of knee osteoarthritis: suggested modifications of the Kellgren and Lawrence scale. Ann Rheum Dis 70:1884–1886

Article  PubMed  Google Scholar 

Madry H, Kon E, Condello V, Peretti GM, Steinwachs M, Seil R et al (2016) Early osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc 24:1753–1762

Article  PubMed  Google Scholar 

Günther KP, Sun Y (1999) Reliability of radiographic assessment in hip and knee osteoarthritis. Osteoarthr Cartil 7:239–246

Article  Google Scholar 

Peterlein CD, Schuttler KF, Lakemeier S, Timmesfeld N, Gorg C, Fuchs-Winkelmann S et al (2010) Reproducibility of different screening classifications in ultrasonography of the newborn hip. BMC Pediatr 10:98

Article  PubMed  PubMed Central  Google Scholar 

Tversky A, Kahneman D (1974) Judgment under uncertainty: heuristics and biases. Science 185:1124–1131

Article  CAS  PubMed  Google Scholar 

Sherif M, Taub D, Hovland CI (1958) Assimilation and contrast effects of anchoring stimuli on judgments. J Exp Psychol 55:150–155

Article  CAS  PubMed  Google Scholar 

Zhang Y, Lewis M, Pellon M, Coleman P. A preliminary research on modeling cognitive agents for social environments in multi-agent systems. 2007.

Hardesty LA, Ganott MA, Hakim CM, Cohen CS, Clearfield RJ, Gur D (2005) “Memory effect” in observer performance studies of mammograms. Acad Radiol 12:286–290

Article  PubMed  Google Scholar 

Ryan JT, Haygood TM, Yamal JM, Evanoff M, O’Sullivan P, McEntee M et al (2011) The “memory effect” for repeated radiologic observations. AJR Am J Roentgenol 197:W985-991

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif