Inhibiting von Hippel‒Lindau protein-mediated Dishevelled ubiquitination protects against experimental parkinsonism

Olsen AL, Feany MB. PARP inhibitors and Parkinson’s disease. N Engl J Med. 2019;380:492–4.

PubMed  Google Scholar 

Dorsey ER, Bloem BR. The Parkinson pandemic-a call to action. JAMA Neurol. 2018;75:9–10.

PubMed  Google Scholar 

Hayes MT. Parkinson’s disease and Parkinsonism. Am J Med. 2019;132:802–7.

PubMed  Google Scholar 

Przedborski S. The two-century journey of Parkinson disease research. Nat Rev Neurosci. 2017;18:251–9.

PubMed  CAS  Google Scholar 

Kalia LV, Lang AE. Parkinson disease in 2015: Evolving basic, pathological and clinical concepts in PD. Nat Rev Neurol. 2016;12:65–6.

PubMed  CAS  Google Scholar 

Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, et al. Parkinson disease. Nat Rev Dis Prim. 2017;3:17013.

PubMed  Google Scholar 

Faure P, Tolu S, Valverde S, Naude J. Role of nicotinic acetylcholine receptors in regulating dopamine neuron activity. Neuroscience. 2014;282:86–100.

PubMed  CAS  Google Scholar 

Patel JC, Rossignol E, Rice ME, Machold RP. Opposing regulation of dopaminergic activity and exploratory motor behavior by forebrain and brainstem cholinergic circuits. Nat Commun. 2012;3:1172.

PubMed  Google Scholar 

Schultz W. Multiple dopamine functions at different time courses. Annu Rev Neurosci. 2007;30:259–88.

PubMed  CAS  Google Scholar 

Verharen JPH, de Jong JW, Lammel S. Dopaminergic control over the tripartite synapse. Neuron. 2020;105:954–6.

PubMed  PubMed Central  CAS  Google Scholar 

Krashia P, Cordella A, Nobili A, La Barbera L, Federici M, Leuti A, et al. Blunting neuroinflammation with resolvin D1 prevents early pathology in a rat model of Parkinson’s disease. Nat Commun. 2019;10:3945.

PubMed  PubMed Central  Google Scholar 

Bankapalli K, Vishwanathan V, Susarla G, Sunayana N, Saladi S, Peethambaram D, et al. Redox-dependent regulation of mitochondrial dynamics by DJ-1 paralogs in Saccharomyces cerevisiae. Redox Biol. 2020;32:101451.

PubMed  PubMed Central  CAS  Google Scholar 

Langston JW. The MPTP story. J Parkinsons Dis. 2017;7:S11–9.

PubMed  PubMed Central  Google Scholar 

Guo RY, Zong S, Wu M, Gu JK, Yang MJ. Architecture of human mitochondrial respiratory megacomplex I2III2IV2. Cell. 2017;170:1247–57.

PubMed  CAS  Google Scholar 

Pitkanen S, Robinson BH. Mitochondrial complex I deficiency leads to increased production of superoxide radicals and induction of superoxide dismutase. J Clin Invest. 1996;98:345–51.

PubMed  PubMed Central  CAS  Google Scholar 

Giachin G, Bouverot R, Acajjaoui S, Pantalone S, Soler-López M. Dynamics of human mitochondrial complex I assembly: implications for neurodegenerative diseases. Front Mol Biosci. 2016;3:43.

PubMed  PubMed Central  Google Scholar 

Chen S, Luo S, Zhang Z, Ma DK. VHL-1 inactivation and mitochondrial antioxidants rescue C. elegans dopaminergic neurodegeneration. Protein Cell. 2019;10:610–4.

PubMed  PubMed Central  CAS  Google Scholar 

Ferrari M, Jain IH, Goldberger O, Rezoagli E, Thoonen R, Cheng KH, et al. Hypoxia treatment reverses neurodegenerative disease in a mouse model of Leigh syndrome. Proc Natl Acad Sci USA. 2017;114:E4241–50.

PubMed  PubMed Central  CAS  Google Scholar 

Wu Y, Jiang ZS, Li ZH, Gu J, You QD, Zhang XJ. Click chemistry-based discovery of [3-Hydroxy-5-(1 H-1,2,3-triazol-4-yl)picolinoyl]glycines as orally active hypoxia-inducing factor prolyl hydroxylase inhibitors with favorable safety profiles for the treatment of anemia. J Med Chem. 2018;61:5332–49.

PubMed  CAS  Google Scholar 

Chen S, Liu AR, An FM, Yao WB, Gao XD. Amelioration of neurodegenerative changes in cellular and rat models of diabetes-related Alzheimer’s disease by exendin-4. Age. 2012;34:1211–24.

PubMed  CAS  Google Scholar 

Kamath RS, Martinez-Campos M, Zipperlen P, Fraser AG, Ahringer J. Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol. 2001;2:Research0002.1–10.

Google Scholar 

Xu DP, Duan HW, Zhang ZJ, Cui W, Wang L, Sun YW, et al. The novel tetramethylpyrazine bis-nitrone (TN-2) protects against MPTP/MPP+-induced neurotoxicity via inhibition of mitochondrial-dependent apoptosis. J Neuroimmune Pharmacol. 2014;9:245–58.

PubMed  Google Scholar 

Frost J, Galdeano C, Soares P, Gadd MS, Grzes KM, Ellis L, et al. Potent and selective chemical probe of hypoxic signalling downstream of HIF-α hydroxylation via VHL inhibition. Nat Commun. 2016;7:13312.

PubMed  PubMed Central  CAS  Google Scholar 

Besarab A, Chernyavskaya E, Motylev I, Shutov E, Kumbar LM, Gurevich K, et al. Roxadustat (FG-4592): correction of anemia in incident dialysis patients. J Am Soc Nephrol. 2016;27:1225–33.

PubMed  CAS  Google Scholar 

Koh MY, Spivak-Kroizman TR, Powis G. Inhibiting the hypoxia response for cancer therapy: the new kid on the block. Clin Cancer Res. 2009;15:5945–6.

PubMed  PubMed Central  CAS  Google Scholar 

Zhang J, Wu T, Simon J, Takada M, Saito R, Fan C, et al. VHL substrate transcription factor ZHX2 as an oncogenic driver in clear cell renal cell carcinoma. Science. 2018;361:290–5.

PubMed  PubMed Central  Google Scholar 

Corn PG, McDonald ER 3rd, Herman JG, El-Deiry WS. Tat-binding protein-1, a component of the 26S proteasome, contributes to the E3 ubiquitin ligase function of the von Hippel-Lindau protein. Nat Genet. 2003;35:229–37.

PubMed  CAS  Google Scholar 

Ma BY, Liu BF, Cao WP, Gao C, Qi Z, Ning YH, et al. The wnt signaling antagonist Dapper1 accelerates Dishevelled2 degradation via promoting its ubiquitination and aggregate-induced autophagy. J Biol Chem. 2015;290:12346–54.

PubMed  PubMed Central  CAS  Google Scholar 

Metcalfe C, Ibrahim AE, Graeb M, de la Roche M, Schwarz-Romond T, Fiedler M, et al. Dvl2 promotes intestinal length and neoplasia in the ApcMin mouse model for colorectal cancer. Cancer Res. 2010;70:6629–38.

PubMed  PubMed Central  CAS  Google Scholar 

Huang SM, Mishina YM, Liu SM, Cheung A, Stegmeier F, Michaud GA, et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature. 2009;461:614–20.

PubMed  CAS  Google Scholar 

Armstrong MJ, Okun MS. Time for a new image of Parkinson disease. JAMA Neurol. 2020;77:1345–6.

PubMed  Google Scholar 

Arun S, Liu L, Donmez G. Mitochondrial biology and neurological diseases. Curr Neuropharmacol. 2016;14:143–54.

PubMed  PubMed Central  CAS  Google Scholar 

Hsieh CH, Shaltouki A, Gonzalez AE, Bettencourt da Cruz A, Burbulla LF, St Lawrence E, et al. Functional impairment in miro degradation and mitophagy is a shared feature in familial and sporadic Parkinson’s disease. Cell Stem Cell. 2016;19:709–24.

PubMed  PubMed Central  CAS  Google Scholar 

Schapira AH, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD. Mitochondrial complex I deficiency in Parkinson’s disease. Lancet. 1989;1:1269.

PubMed  CAS  Google Scholar 

Anglade P, Vyas S, Javoy-Agid F, Herrero MT, Michel PP, Marquez J, et al. Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histol Histopathol. 1997;12:25–31.

PubMed  CAS  Google Scholar 

Wang YQ, Chen C, Huang WL, Huang MX, Wang JH, Chen XC, et al. Beneficial effects of PGC-1α in the substantia nigra of a mouse model of MPTP-induced dopaminergic neurotoxicity. Aging. 2019;11:8937–50.

PubMed  PubMed Central  Google Scholar 

Triepels RH, van den Heuvel LP, Loeffen JL, Buskens CA, Smeets RJ, Rubio Gozalbo ME, et al. Leigh syndrome associated with a mutation in the NDUFS7 (PSST) nuclear encoded subunit of complex I. Ann Neurol. 1999;45:787–90.

PubMed  CAS  Google Scholar 

Fiedorczuk K, Sazanov LA. Mammalian mitochondrial complex I structure and disease-causing mutations. Trends Cell Biol. 2018;28:835–67.

PubMed  CAS  Google Scholar 

Zhu YY, Zhao YX, Zou L, Zhang DF, Aki D, Liu YC. The E3 ligase VHL promotes follicular helper T cell differentiation via glycolytic-epigenetic control. J Exp Med. 2019;216:1664–81.

PubMed  PubMed Central  CAS  Google Scholar 

Cargill K, Hemker SL, Clugston A, Murali A, Mukherjee E, Liu J, et al. Von Hippel-Lindau acts as a metabolic switch controlling nephron progenitor differentiation. J Am Soc Nephrol. 2019;30:1192–205.

PubMed  PubMed Central  CAS  Google Scholar 

Nguyen-Tran HH, Nguyen TN, Chen CY, Hsu T. Endothelial reprogramming stimulated by oncostatin M promotes inflammation and tumorigenesis in VHL-deficient kidney tissue. Cancer Res. 2021;81:5060–73.

PubMed  CAS  Google Scholar 

Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001;292:468–72.

PubMed  CAS  Google Scholar 

Gao C, Cao WP, Bao L, Zuo W, Xie GM, Cai TT, et al. Autophagy negatively regulates Wnt signalling by promoting Dishevelled degradation. Nat Cell Biol. 2010;12:781–90.

PubMed  CAS  Google Scholar 

留言 (0)

沒有登入
gif