A study from structural insight to the antiamyloidogenic and antioxidant activities of flavonoids: scaffold for future therapeutics of Alzheimer’s disease

Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science. 1992;256:184–1855. https://doi.org/10.1126/SCIENCE.1566067.

Article  CAS  PubMed  Google Scholar 

Müller UC, Deller T, Korte M. Not just amyloid: physiological functions of the amyloid precursor protein family. Nat Rev Neurosci. 2017;18:281–98. https://doi.org/10.1038/nrn.2017.29.

Article  PubMed  Google Scholar 

Jarrett JT, Lansbury PT. Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell. 1993;73:1055–8. https://doi.org/10.1016/0092-8674(93)90635-4.

Article  CAS  PubMed  Google Scholar 

Hasegawa K, Yamaguchi I, Omata S, Gejyo F, Naiki H. Interaction between Aβ(1-42) and Aβ(1-40) in alzheimer’s β-amyloid fibril formation in vitro. Biochemistry. 1999;38:15514–21. https://doi.org/10.1021/bi991161m.

Article  CAS  PubMed  Google Scholar 

Morita M, Hamada T, Tendo Y, Hata T, Vestergaard MC, Takagi M. Selective localization of Alzheimer’s amyloid beta in membrane lateral compartments. Soft Mat. 2012;8:2816–19. https://doi.org/10.1039/c2sm07185a. 2816–2819.

Article  CAS  Google Scholar 

Snow AD, Wight TN. Proteoglycans in the pathogenesis of Alzheimer’s disease and other amyloidoses. Neurobiol Aging. 1989;10:481–97. https://doi.org/10.1016/0197-4580(89)90108-5.

Article  CAS  PubMed  Google Scholar 

Terzi E, Hölzemann G, Seelig J. Self-association of β-amyloid peptide (1-40) in solution and binding to lipid membranes. J Mol Biol. 1995;252:633–42. https://doi.org/10.1006/jmbi.1995.0525.

Article  CAS  PubMed  Google Scholar 

Harper JD, Lansbury PT. Models of amyloid seeding in Alzheimer’s disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu Rev Biochem. 1997;66:385–407. https://doi.org/10.1146/annurev.biochem.66.1.385.

Article  CAS  PubMed  Google Scholar 

Jarrett JT, Berger EP, Lansbury PT. The carboxy terminus of the β amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease. Biochemistry. 1993;32:4693–4697. https://doi.org/10.1021/bi00069a001.

Article  CAS  PubMed  Google Scholar 

Puzzo D, Privitera L, Palmeri A. Hormetic effect of amyloid-beta peptide in synaptic plasticity and memory. Neurobiol Aging. 2012;33:1484.e15–24. https://doi.org/10.1016/j.neurobiolaging.2011.12.020.

Article  CAS  Google Scholar 

Giuffrida ML, Caraci F, Pignataro B, Cataldo S, De Bona P, Bruno V, et al. β-amyloid monomers are neuroprotective. J Neurosci. 2009;29:10582–7. https://doi.org/10.1523/JNEUROSCI.1736-09.2009.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Murphy MP, LeVine H. Alzheimer’s disease and the amyloid-beta peptide. J Alzheimers Dis. 2010;19:311–323. https://doi.org/10.3233/JAD-2010-1221.

Article  PubMed  PubMed Central  Google Scholar 

Townsend M, Shankar GM, Mehta T, Walsh DM, Selkoe DJ. Effects of secreted oligomers of amyloid β-protein on hippocampal synaptic plasticity: a potent role for trimers. J Physiol. 2006;572:477–492. https://doi.org/10.1113/jphysiol.2005.103754.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dahlgren KN, Manelli AM, Blaine Stine W, Baker LK, Krafft GA, Ladu MJ. Oligomeric and fibrillar species of amyloid-β peptides differentially affect neuronal viability. J Biol Chem. 2002;277:32046–53. https://doi.org/10.1074/jbc.M201750200.

Article  CAS  PubMed  Google Scholar 

Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat Rev Mol Cell Biol. 2007;8:101–12. https://doi.org/10.1038/nrm2101.

Article  CAS  PubMed  Google Scholar 

Tamagno E, Bardini P, Guglielmotto M, Danni O, Tabaton M. The various aggregation states of β-amyloid 1-42 mediate different effects on oxidative stress, neurodegeneration, and BACE-1 expression. Free Radic Biol Med. 2006;41:202–12. https://doi.org/10.1016/j.freeradbiomed.2006.01.021.

Article  CAS  PubMed  Google Scholar 

Li Y, Zhou S, Li J, Sun Y, Hasimu H, Liu R, et al. Quercetin protects human brain microvascular endothelial cells from fibrillar β-amyloid1-40-induced toxicity. Acta Pharm Sin B. 2015;5:47–54. https://doi.org/10.1016/j.apsb.2014.12.003.

Article  PubMed  PubMed Central  Google Scholar 

Saido T, Leissring MA. Proteolytic degradation of amyloid β-protein. Cold Spring Harb Perspect Med. 2012;2:a006379–79. https://doi.org/10.1101/cshperspect.a006379.

Article  PubMed  PubMed Central  Google Scholar 

Sagare AP, Bell RD, Zlokovic BV. Neurovascular defects and faulty amyloid-β vascular clearance in Alzheimer’s disease. J Alzheimers Dis. 2013;33:S87–100. https://doi.org/10.3233/JAD-2012-129037.

Article  PubMed  PubMed Central  Google Scholar 

Zou K, Gong JS, Yanagisawa K, Michikawa M. A novel function of monomeric amyloid β-protein serving as an antioxidant molecule against metal-induced oxidative damage. J Neurosci. 2002;22:4833–4841. https://doi.org/10.1523/jneurosci.22-12-04833.2002.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Butterfield DA, Boyd-Kimball D. Redox proteomics and amyloid β-peptide: insights into Alzheimer disease. J Neurochem. 2019;151:459–487. https://doi.org/10.1111/jnc.14589.

Article  CAS  PubMed  Google Scholar 

Baruch-Suchodolsky R, Fischer B. Aβ40, either soluble or aggregated, is a remarkably potent antioxidant in cell-free oxidative systems. Biochemistry. 2009;48:4354–70. https://pubs.acs.org/doi/10.1021/bi802361k.

Article  CAS  PubMed  Google Scholar 

Butterfield DA, Kanski J. Brain protein oxidation in age-related neurodegenerative disorders that are associated with aggregated proteins. Mech Ageing Dev. 2001;122:945–962. https://doi.org/10.1016/S0047-6374(01)00249-4.

Article  CAS  PubMed  Google Scholar 

Butterfield DA, Drake J, Pocernich C, Castegna A. Evidence of oxidative damage in Alzheimer’s disease brain: Central role for amyloid β-peptide. Trends Mol Med Trends Mol Med. 2001;7:548–54. https://doi.org/10.1016/S1471-4914(01)02173-6.

Article  CAS  PubMed  Google Scholar 

Butterfield DA, Castegna A, Lauderback CM, Drake J. Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobiol Aging. 2002;23:655–64. https://doi.org/10.1016/S0197-4580(01)00340-2.

Article  PubMed  Google Scholar 

Drake J, Link CD, Butterfield DA. Oxidative stress precedes fibrillar deposition of Alzheimer’s disease amyloid β-peptide (1-42) in a transgenic Caenorhabditis elegans model. Neurobiol Aging. 2003;24:415–20. https://doi.org/10.1016/S0197-4580(02)00225-7.

Article  CAS  PubMed  Google Scholar 

Murray IVJ, Sindoni ME, Axelsen PH. Promotion of oxidative lipid membrane damage by amyloid β proteins. Biochemistry. 2005;44:12606–13. https://doi.org/10.1021/bi050926p.

Article  CAS  PubMed  Google Scholar 

Esterbauer H, Ramos P. Chemistry and pathophysiology of oxidation of LDL. Rev Physiol Biochem Pharm. 1996;127:31–64. https://doi.org/10.1007/bfb0048264.

Article  CAS  Google Scholar 

Yin H, Xu L, Porter NA. Free radical lipid peroxidation: mechanisms and analysis. Chem Rev. 2011;111:5944–72. https://doi.org/10.1021/cr200084z.

Article  CAS  PubMed  Google Scholar 

Tamagno E, Bardini P, Obbili A, Vitali A, Borghi R, Zaccheo D, et al. Oxidative stress increases expression and activity of BACE in NT2 neurons. Neurobiol Dis. 2002;10:279–27988. https://doi.org/10.1006/nbdi.2002.0515.

Article  CAS  PubMed  Google Scholar 

Wang R, Wang S, Malter JS, Wang DS. Effects of HNE-modification induced by Aβ on neprilysin expression and activity in SH-SY5Y cells. J Neurochem. 2009;108:1072–82. http://doi.wiley.com/10.1111/j.1471-4159.2008.05855.x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Siegel SJ, Bieschke J, Powers ET, Kelly JW. The oxidative stress metabolite 4-hydroxynonenal promotes Alzheimer protofibril formation. Biochemistry. 2007;46:1503–10. https://doi.org/10.1021/bi061853s.

Article  CAS  PubMed  Google Scholar 

Kummer MP, Hermes M, Delekarte A, Hammerschmidt T, Kumar S, Terwel D, et al. Nitration of tyrosine 10 critically enhances amyloid β aggregation and plaque formation. Neuron. 2011;71:833–44. https://doi.org/10.1016/j.neuron.2011.07.001.

Article  CAS  PubMed  Google Scholar 

Birks JS, Harvey RJ. Donepezil for dementia due to Alzheimer’s disease. Cochrane Database Syst Rev. 2018;6:CD001190. https://doi.org/10.1002/14651858.CD001190.pub3.

Article  PubMed  Google Scholar 

Birks JS. Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst Rev. 2006;25:CD005593. https://doi.org/10.1002/14651858.CD005593.

Article  Google Scholar 

Khoury R, Rajamanickam J, Grossberg GT. An update on the safety of current therapies for Alzheimer’s disease: focus on rivastigmine. Ther Adv Drug Saf. 2018;9:171–8. https://doi.org/10.1177/2042098617750555.

留言 (0)

沒有登入
gif