Application of near-infrared fluorescence imaging in the accurate assessment of surgical margins during breast-conserving surgery

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. https://doi.org/10.3322/caac.21492.

Article  PubMed  Google Scholar 

Veronesi U, Cascinelli N, Mariani L, Greco M, Saccozzi R, Luini A, et al. Twenty-year follow-up of a randomized study comparing breast-conserving surgery with radical mastectomy for early breast cancer. N Engl J Med. 2002;347(16):1227–32. https://doi.org/10.1056/NEJMoa020989.

Article  PubMed  Google Scholar 

Tang SS, Kaptanis S, Haddow JB, Mondani G, Elsberger B, Tasoulis MK, et al. Current margin practice and effect on re-excision rates following the publication of the SSO-ASTRO consensus and ABS consensus guidelines: a national prospective study of 2858 women undergoing breast-conserving therapy in the UK and Ireland. Eur J Cancer. 2017. https://doi.org/10.1016/j.ejca.2017.07.032.

Lovrics PJ, Cornacchi SD, Farrokhyar F, Garnett A, Chen V, Franic S, et al. The relationship between surgical factors and margin status after breast-conservation surgery for early stage breast cancer. Am J Surg. 2009;197(6):740–6. https://doi.org/10.1016/j.amjsurg.2008.03.007.

Article  PubMed  Google Scholar 

Lafreniere AS, Shine JJ, Nicholas CR, Temple-Oberle CF. The use of indocyanine green and near-infrared fluorescence imaging to assist sentinel lymph node biopsy in cutaneous melanoma: a systematic review. Eur J Surg Oncol. 2021;47(5):935–41. https://doi.org/10.1016/j.ejso.2020.10.027.

Article  PubMed  Google Scholar 

Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46(12 Pt 1):6387–92.

PubMed  CAS  Google Scholar 

Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzym Regul. 2001;41:189–207. https://doi.org/10.1016/s0065-2571(00)00013-3.

Article  CAS  Google Scholar 

Terasawa M, Ishizawa T, Mise Y, Inoue Y, Ito H, Takahashi Y, et al. Applications of fusion-fluorescence imaging using indocyanine green in laparoscopic hepatectomy. Surg Endosc. 2017;31(12):5111–8. https://doi.org/10.1007/s00464-017-5576-z.

Article  PubMed  Google Scholar 

Ishizawa T, Saiura A, Kokudo N. Clinical application of indocyanine green-fluorescence imaging during hepatectomy. Hepatobiliary Surg Nutr. 2016;5(4):322–8. https://doi.org/10.21037/hbsn.2015.10.01.

Article  PubMed  PubMed Central  Google Scholar 

Okusanya OT, Hess NR, Luketich JD, Sarkaria IS. Infrared intraoperative fluorescence imaging using indocyanine green in thoracic surgery. Eur J Cardio Thoracic Surg. 2018;53(3):512–8. https://doi.org/10.1093/ejcts/ezx352.

Article  Google Scholar 

Pan J, Deng H, Hu S, Xia C, Chen Y, Wang J, et al. Real-time surveillance of surgical margins via ICG-based near-infrared fluorescence imaging in patients with OSCC. World J Surg Oncol. 2020;18(1):96. https://doi.org/10.1186/s12957-020-01874-z.

Article  PubMed  PubMed Central  Google Scholar 

Keating J, Tchou J, Okusanya O, Fisher C, Batiste R, Jiang J, et al. Identification of breast cancer margins using intraoperative near-infrared imaging. J Surg Oncol. 2016;113(5):508–14. https://doi.org/10.1002/jso.24167.

Article  PubMed  CAS  Google Scholar 

Jiang Y, Huang J, Zhen X, Zeng Z, Li J, Xie C, et al. A generic approach towards afterglow luminescent nanoparticles for ultrasensitive in vivo imaging. Nat Commun. 2019;10(1):2064. https://doi.org/10.1038/s41467-019-10119-x.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zocola E, Meyer J, Christou N, Liot E, Toso C, Buchs NC, et al. Role of near-infrared fluorescence in colorectal surgery. World J Gastroenterol. 2021;27(31):5189–200. https://doi.org/10.3748/wjg.v27.i31.5189.

Article  PubMed  PubMed Central  Google Scholar 

Newton AD, Predina JD, Shin MH, Frenzel-Sulyok LG, Vollmer CM, Drebin JA, et al. Intraoperative near-infrared imaging can identify neoplasms and aid in real-time margin assessment during pancreatic resection. Ann Surg. 2019;270(1):12–20. https://doi.org/10.1097/SLA.0000000000003201.

Article  PubMed  Google Scholar 

Verbeek FP, Troyan SL, Mieog JS, Liefers GJ, Moffitt LA, Rosenberg M, et al. Near-infrared fluorescence sentinel lymph node mapping in breast cancer: a multicenter experience. Breast Cancer Res Treat. 2014;143(2):333–42. https://doi.org/10.1007/s10549-013-2802-9.

Article  PubMed  Google Scholar 

Zhang Y, Li F, Qiu L, Xu L, Niu X, Sui Y, et al. Toward precise osteotomies: a coarse-to-fine 3D cut plane planning method for image-guided pelvis tumor resection surgery. IEEE Trans Med Imaging. 2020;39(5):1511–23. https://doi.org/10.1109/TMI.2019.2951838.

Article  PubMed  Google Scholar 

Paul L, Cartiaux O, Docquier PL, Banse X. Ergonomic evaluation of 3D plane positioning using a mouse and a haptic device. Int J Med Robot. 2009;5(4):435–43. https://doi.org/10.1002/rcs.275.

Article  PubMed  Google Scholar 

Pop FC, Veys I, Vankerckhove S, Barbieux R, Chintinne M, Moreau M, et al. Absence of residual fluorescence in the surgical bed at near-infrared fluorescence imaging predicts negative margins at final pathology in patients treated with breast-conserving surgery for breast cancer. Eur J Surg Oncol. 2021;47(2):269–75. https://doi.org/10.1016/j.ejso.2020.09.036.

Article  PubMed  Google Scholar 

Karanlik H, Ozgur I, Sahin D, Fayda M, Onder S, Yavuz E. Intraoperative ultrasound reduces the need for re-excision in breast-conserving surgery. World J Surg Oncol. 2015;13:321. https://doi.org/10.1186/s12957-015-0731-2.

Article  PubMed  PubMed Central  Google Scholar 

Guan L, Xu G. Damage effect of high-intensity focused ultrasound on breast cancer tissues and their vascularities. World J Surg Oncol. 2016;14(1):153. https://doi.org/10.1186/s12957-016-0908-3.

Article  PubMed  PubMed Central  Google Scholar 

Colakovic N, Zdravkovic D, Skuric Z, Mrda D, Gacic J, Ivanovic N. Intraoperative ultrasound in breast cancer surgery-from localization of non-palpable tumors to objectively measurable excision. World J Surg Oncol. 2018;16(1):184. https://doi.org/10.1186/s12957-018-1488-1.

Article  PubMed  PubMed Central  Google Scholar 

Namdar ZM, Omidifar N, Arasteh P, Akrami M, Tahmasebi S, Nobandegani AS, et al. How accurate is frozen section pathology compared to permanent pathology in detecting involved margins and lymph nodes in breast cancer? World J Surg Oncol. 2021;19(1):261. https://doi.org/10.1186/s12957-021-02365-5.

Article  PubMed  PubMed Central  Google Scholar 

Wang K, Ren Y, Huang R, He JJ, Feng WL, Kong YN, et al. Application of intraoperative frozen section examination in the management of female breast cancer in China: a nationwide, multicenter 10-year epidemiological study. World J Surg Oncol. 2014;12:225. https://doi.org/10.1186/1477-7819-12-225.

Article  PubMed  PubMed Central  Google Scholar 

Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39:175–91. https://doi.org/10.3758/BF03193146.

Article  PubMed  Google Scholar 

Lakens D. Sample size justification. Collabra Psychol. 2022;8:1–28.

Article  Google Scholar 

留言 (0)

沒有登入
gif