Advances in studies of circulating microRNAs: origination, transportation, and distal target regulation

Almanza G, Rodvold JJ, Tsui B et al (2018) Extracellular vesicles produced in B cells deliver tumor suppressor miR-335 to breast cancer cells disrupting oncogenic programming in vitro and in vivo. Sci Rep 8:17581. https://doi.org/10.1038/s41598-018-35968-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arroyo JD, Chevillet JR, Kroh EM et al (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A 108:5003–5008. https://doi.org/10.1073/pnas.1019055108

Article  PubMed  PubMed Central  Google Scholar 

Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297. https://doi.org/10.1016/s0092-8674(04)00045-5

Article  CAS  PubMed  Google Scholar 

Bartel DP, Chen CZ (2004) Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet 5:396–400. https://doi.org/10.1038/nrg1328

Article  CAS  PubMed  Google Scholar 

Blanc L, Vidal M (2010) Reticulocyte membrane remodeling: contribution of the exosome pathway. Curr Opin Hematol 17:177–183. https://doi.org/10.1097/MOH.0b013e328337b4e3

Article  CAS  PubMed  Google Scholar 

Cavalieri D, Rizzetto L, Tocci N et al (2016) Plant microRNAs as novel immunomodulatory agents. Sci Rep 6:25761. https://doi.org/10.1038/srep25761

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chang J, Nicolas E, Marks D et al (2004) miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol 1:106–113. https://doi.org/10.4161/rna.1.2.1066

Article  CAS  PubMed  Google Scholar 

Chen JF, Mandel EM, Thomson JM et al (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38:228–233. https://doi.org/10.1038/ng1725

Article  CAS  PubMed  Google Scholar 

Chen Q, Zhang F, Dong L et al (2021) SIDT1-dependent absorption in the stomach mediates host uptake of dietary and orally administered microRNAs. Cell Res 31:247–258. https://doi.org/10.1038/s41422-020-0389-3

Article  CAS  PubMed  Google Scholar 

Chen X, Ba Y, Ma L et al (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18:997–1006. https://doi.org/10.1038/cr.2008.282

Article  CAS  PubMed  Google Scholar 

Chin AR, Fong MY, Somlo G et al (2016) Cross-kingdom inhibition of breast cancer growth by plant miR159. Cell Res 26:217–228. https://doi.org/10.1038/cr.2016.13

Article  CAS  PubMed  PubMed Central  Google Scholar 

Corsten MF, Dennert R, Jochems S et al (2012) Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circ-Cardiovasc Gene 3:499–506

Article  Google Scholar 

Di Leva G, Croce CM (2010) Roles of small RNAs in tumor formation. Trends Mol Med 16:257–267. https://doi.org/10.1016/j.molmed.2010.04.001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ding J, Xu Z, Zhang Y et al (2018) Exosome-mediated miR-222 transferring: An insight into NF-κB-mediated breast cancer metastasis. Exp Cell Res 369:129–138. https://doi.org/10.1016/j.yexcr.2018.05.014

Article  CAS  PubMed  Google Scholar 

Fabian MR, Cieplak MK, Frank F et al (2011) miRNA-mediated deadenylation is orchestrated by GW182 through two conserved motifs that interact with CCR4-NOT. Nat Struct Mol Biol 18:1211–1217. https://doi.org/10.1038/nsmb.2149

Article  CAS  PubMed  Google Scholar 

Gallo A, Tandon M, Alevizos I et al (2012) The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS ONE 7:e30679. https://doi.org/10.1371/journal.pone.0030679

Article  CAS  PubMed  PubMed Central  Google Scholar 

Garcia-Martin R, Wang G, Brandao BB et al (2022) MicroRNA sequence codes for small extracellular vesicle release and cellular retention. Nature 601:446–451. https://doi.org/10.1038/s41586-021-04234-3

Article  CAS  PubMed  Google Scholar 

Gilad S, Meiri E, Yogev Y et al (2008) Serum microRNAs are promising novel biomarkers. PLoS ONE 3:e3148. https://doi.org/10.1371/journal.pone.0003148

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gonda A, Kabagwira J, Senthil GN et al (2019) Internalization of exosomes through receptor-mediated endocytosis. Mol Cancer Res 17:337–347. https://doi.org/10.1158/1541-7786.MCR-18-0891

Article  CAS  PubMed  Google Scholar 

Groot M, Lee H (2020) Sorting Mechanisms for MicroRNAs into Extracellular Vesicles and Their Associated Diseases. Cells 9. https://doi.org/10.3390/cells9041044

Gunel T, Zeybek YG, Akcakaya P et al (2011) Serum microRNA expression in pregnancies with preeclampsia. Genet Mol Res 10:4034–4040. https://doi.org/10.4238/2011.November.8.5

Article  CAS  PubMed  Google Scholar 

Hanke M, Hoefig K, Merz H et al (2010) A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol Oncol 28:655–661. https://doi.org/10.1016/j.urolonc.2009.01.027

Article  CAS  PubMed  Google Scholar 

Havlik LP, Simon KE, Smith JK et al (2020) Co-evolution of AAV capsid antigenicity and tropism through a structure-guided approach. J Virol 94:e00976–e00920

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hou D, He F, Ma L et al (2018) The potential atheroprotective role of plant MIR156a as a repressor of monocyte recruitment on inflamed human endothelial cells. J Nutr Biochem 57:197–205. https://doi.org/10.1016/j.jnutbio.2018.03.026

Article  CAS  PubMed  Google Scholar 

Iwakawa HO, Tomari Y (2022) Life of RISC: Formation, action, and degradation of RNA-induced silencing complex. Mol Cell 82:30–43. https://doi.org/10.1016/j.molcel.2021.11.026

Article  CAS  PubMed  Google Scholar 

Jia M, He J, Bai W et al (2021) Cross-kingdom regulation by dietary plant miRNAs: an evidence-based review with recent updates. Food Funct 12:9549–9562. https://doi.org/10.1039/d1fo01156a

Article  CAS  PubMed  Google Scholar 

Jopling CL, Schutz S, Sarnow P (2008) Position-dependent function for a tandem microRNA miR-122-binding site located in the hepatitis C virus RNA genome. Cell Host Microbe 4:77–85. https://doi.org/10.1016/j.chom.2008.05.013

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kalarikkal SP, Sundaram GM (2021) Edible plant-derived exosomal microRNAs: Exploiting a cross-kingdom regulatory mechanism for targeting SARS-CoV-2. Toxicol Appl Pharmacol 414:115425. https://doi.org/10.1016/j.taap.2021.115425

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6:376–385

Article  CAS  PubMed  Google Scholar 

Kimura K, Hohjoh H, Fukuoka M et al (2018) Circulating exosomes suppress the induction of regulatory T cells via let-7i in multiple sclerosis. Nat Commun 9:17. https://doi.org/10.1038/s41467-017-02406-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Koppers-Lalic D, Hackenberg M, Bijnsdorp IV et al (2014) Nontemplated nucleotide additions distinguish the small RNA composition in cells from exosomes. Cell Rep 8:1649–1658. https://doi.org/10.1016/j.celrep.2014.08.027

Article  CAS  PubMed  Google Scholar 

Kosaka N, Iguchi H, Hagiwara K et al (2013) Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. J Biol Chem 288:10849–10859. https://doi.org/10.1074/jbc.M112.446831

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kosaka N, Izumi H, Sekine K et al (2010) microRNA as a new immune-regulatory agent in breast milk. Silence 1. 7https://doi.org/10.1186/1758-907X-1-7

Kotlabova K, Doucha J, Hromadnikova I (2011) Placental-specific microRNA in maternal circulation–identification of appropriate pregnancy-associated microRNAs with diagnostic potential. J Reprod Immunol 89:185–191. https://doi.org/10.1016/j.jri.2011.02.006

Article  CAS  PubMed  Google Scholar 

Kusuma RJ, Manca S, Friemel T et al (2016) Human vascular endothelial cells transport foreign exosomes from cow’s milk by endocytosis. Am J Physiol Cell Physiol 310:C800–807. https://doi.org/10.1152/ajpcell.00169.2015

Article  PubMed  PubMed Central  Google Scholar 

Lasser C, Alikhani VS, Ekstrom K et al (2011) Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages. J Transl Med 9:9. https://doi.org/10.1186/1479-5876-9-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leidal AM, Huang HH, Marsh T et al (2020) The LC3-conjugation machinery specifies the loading of RNA-binding proteins into extracellular vesicles. Nat Cell Biol 22:187–199. https://doi.org/10.1038/s41556-019-0450-y

留言 (0)

沒有登入
gif