Increased expression of 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase-3 is required for growth of mouse embryonic stem cells that are undergoing differentiation

Al-Tubuly, (2000) SDS-PAGE and western blotting. Methods Mol Med 40:391–405

Article  CAS  Google Scholar 

Ando M, Uehara I, Kogure K, Asano Y, Nakajima W, Abe Y (2010) Interleukin 6 enhances glycolysis through expression of the glycolytic enzymes hexokinase 2 and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3. J Nippon Med Sch 77:97–105

Article  CAS  PubMed  Google Scholar 

Brons I, Smithers L, Trotter M, Rugg-Gunn P, Sun B, Lopes S, Howlett S, Clarkson A, Ahrlund-Richter L, Pedersen R, Vallier L (2007) Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448:191–195

Article  CAS  PubMed  Google Scholar 

Cha Y, Han MJ, Cha HJ, Zoldan J, Burkart A, Jung JH (2017) Metabolic control of primed human pluripotent stem cell fate and function by the miR-200c–SIRT2 axis. Nat Cell Biol 19:445–456

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cherepkova MY, Sineva GS, Pospelov VA (2016) Leukemia inhibitory factor (LIF) withdrawal activates mTOR signaling pathway in mouse embryonic stem cells through the MEK/ERK/TSC2 pathway. Cell Death and Dis 7:e2050

Article  CAS  Google Scholar 

Chesney J, Telang S, Yalcin A, Clem A, Wallis N, Bucala R (2005) Targeted disruption of inducible 6-phosphofructo-2-kinase results in embryonic lethality. Biochem Biophys Res Commun 331:139–146

Article  CAS  PubMed  Google Scholar 

Clem B, Telang S, Clem A, Yalcin A, Meier J, Simmons A, Rasku MA, Arumugam S, Dean WL, Eaton J, Lane A, Trent JO, Chesney J (2008) Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. Mol Cancer Ther 7:110–120

Article  CAS  PubMed  Google Scholar 

Domenech E, Maestre C, Esteban-Martinez L, Partida D, Pascual R, Fernandez Miranda G, Seco E, Campos-Olivas R, Perez M, Megias D (2015) AMPK and PFKFB3 mediate glycolysis and survival in response to mitophagy during mitotic arrest. Nat Cell Biol 17:1304–1316

Article  CAS  PubMed  Google Scholar 

Dunwoodie SL (2009) The role of hypoxia in development of the mammalian embryo. Dev Cell 17:755–773

Article  CAS  PubMed  Google Scholar 

Griesel BA, Matsuzaki S, Batushansky A, Griffin TM, Humphries KM, Olson AL (2021) PFKFB3-dependent glucose metabolism regulates 3T3-L1 adipocyte development. FASEB J 35:e21728

Article  CAS  PubMed  Google Scholar 

Hamanaka RB, Mutlu GM (2017) PFKFB3, a direct target of p63, is required for proliferation and inhibits differentiation in epidermal keratinocytes. J Invest Dermatol 137:1267–1276

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hirai HJ, Karian P, Kikyo N (2011) Regulation of embry- onic stem cell self-renewal and pluripotency by leu- kaemia inhibitory factor. Biochem J 438:11–23

Article  CAS  PubMed  Google Scholar 

Hong Y, Schartl M (1996) Establishment and growth responses of early medakafish (Oryzias latipes) embryonic cells in feeder layer-free cultures. Mol Mar Biol Biotechnol 5:93–104

CAS  Google Scholar 

Kim Y, Yi B, Kim N, Choi K (2014) Role of the epithelial–mesenchymal transition and its effects on embryonic stem cells. Exp Mol Med 46:e108

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kurek D, Neagu A, Tastemel M, Tüysüz N, Lehmann J, Van de Werken HJG, Philipsen S, Van der R, Maas A, Van IJcken WFJ, Drukker M, Berge D, (2015) Endogenous WNT signals mediate bmp-induced and spontaneous differentiation of epiblast stem cells and human embryonic stem cells. Stem Cell Rep 4:114–128

Article  CAS  Google Scholar 

Lee YL, Peng Q, Fong SW, Chen AC, Lee KF, Ng EH (2012) Sirtuin 1 facilitates generation of induced pluripotent stem cells from mouse emb ryonic fibroblasts through the miR-34a and p53 pathways. PLoS ONE 7:e45633

Article  CAS  PubMed  PubMed Central  Google Scholar 

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408

Article  CAS  PubMed  Google Scholar 

Mathieu J, Ruohola-Baker H (2017) Metabolic remodeling during the loss and acquisition of pluripotency. Development 144:541–551

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mu WL, Wang YJ, Xu P, Hao DL, Liu XZ, Wang TT (2015) Sox2 deacetylation by sirt1 is involved in mouse somatic reprogramming. Stem Cells 33:2135–2147

Article  CAS  PubMed  Google Scholar 

Niwa H, Ogawa K, Shimosato D, Adachi K (2009) A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature 460:118–122

Article  CAS  PubMed  Google Scholar 

Novellasdemunt L, Navarro-Sabaté À, Manzano A, Rodríguez-García A, Bartrons R (2013) PFKFB3 (6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3). Atlas Genet Cytogenet Oncol Haematol. https://doi.org/10.4267/2042/51425

Article  Google Scholar 

Ochocki JD, Simon MC (2013) Nutrient-sensing pathways and metabolic regulation in stem cells. J Cell Biol 203(1):23–33

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pegoraro C, Maczkowiak F, Monsoro-Burq AH (2013) Pfkfb (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase) isoforms display a tissue-specific and dynamic expression during Xenopus laevis development. Gene Expr Patterns 13:203–211

Article  CAS  PubMed  Google Scholar 

Pegoraro C, Figueiredo AL, Maczkowiak F, Pouponnot C, Eychène A, Monsoro-Burq AH (2015) PFKFB4 controls embryonic patterning via Akt signalling independently of glycolysis. Nat Commun 6:5953. https://doi.org/10.1038/ncomms6953

Article  CAS  PubMed  Google Scholar 

Peng F, Li Q, Sun J, Luo Y, Chen M, Bao Y (2018) PFKFB3 is involved in breast cancer proliferation, migration, invasion and angiogenesis. Int J Oncol 52:945–954

CAS  PubMed  Google Scholar 

Piquet-Pellorce C, Grey L, Mereau A, Heath JK (1994) Are LIF and related cytokines functionally equivalent? Exp Cell Res 213:340–347

Article  CAS  PubMed  Google Scholar 

Raz R, Lee CK, Cannizzaro LA, d’Eustachio P, Levy DE (1999) Essential role of STAT3 for embryonic stem cell pluripotency. Proc Natl Acad Sci USA 96:2846–2851

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shyh-Chang N, Ng H-H (2017) The metabolic programming of stem cells. Genes Dev 31:336–346

Article  PubMed  PubMed Central  Google Scholar 

Si X, Chen W, Guo X, Chen L, Wang G, Xu Y (2013) Activation of GSK3beta by Sirt2 is required for early lineage commitment of mouse embryonic stem cel. PLoS ONE 8:e76699

Article  CAS  PubMed  PubMed Central  Google Scholar 

Simon MC, Keith B (2008) The role of oxygen availability in embryonic development and stem cell function. Nat Rev Mol Cell Biol 9:285–296

Article  CAS  PubMed  PubMed Central  Google Scholar 

Song L, Chen J, Peng G, Tang K, Jing N (2016) Dynamic Heterogeneity of brachyury in mouse epiblast stemcells mediates distinct response to extrinsic bonemorphogenetic protein (BMP) signaling. J Biol Chem 291:15212–15225

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL, Gardner RL, McKay RDG (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 48:196–199

Article  Google Scholar 

Tsogtbaatar E, Landin C, Minter-Dykhouse K, Folmes CDL (2020) Energy metabolism regulates stem cell pluripotency. Front Cell Dev Biol 8:87

Article  PubMed  PubMed Central  Google Scholar 

Van Schaftingen E, Lederer B, Bartrons R, Hers HG (1982) A kinetic study of pyrophosphate: fructose-6-phosphate phosphotransferase from potato tubers. Application to a microassay of fructose 2,6-bisphosphate. Eur J Biochem FEBS 129:91e195

Article  Google Scholar 

Weinberger L, Ayyash M, Novershtern N, Hanna JH (2016) Dynamic stem cell states: naive to primed pluripotency in rodents and humans. Nat Rev Mol Cell Biol 17:155–169

Article  CAS  PubMed  Google Scholar 

Yalcin A, Clem BF, Simmons A, Lane A, Nelson K, Clem AL, Brock E, Siow D, Wattenberg B, Telang S, Chesney J (2009) Nuclear targeting of 6-phosphofructo-2-kinase (PFKFB3) increases proliferation via cyclin-dependent kinases. J Biol Chem 284:24223–24232

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yalcin A, Clem BF, Imbert-Fernandez Y, Ozcan SC, Peker S, O’Neal J, Klarer AC, Clem AL, Telang S, Chesney J (2014) 6-Phosphofructo-2-kinase (PFKFB3) promotes cell cycle progression and suppresses apoptosis via Cdk1-mediated phosphorylation of p27. Cell Death Dis 5:e1337

Article  CAS 

留言 (0)

沒有登入
gif