Tubulin Cytoskeleton in Neurodegenerative Diseases–not Only Primary Tubulinopathies

Akhmanova A, Hoogenraad CC (2018) More is not always better: hyperglutamylation leads to neurodegeneration. EMBO J 37:e101023

PubMed  PubMed Central  Google Scholar 

Alfaro-Aco R, Petry S (2015) Building the microtubule cytoskeleton piece by piece. J Biol Chem 290:17154–17162

CAS  PubMed  PubMed Central  Google Scholar 

Alonso A, Grundke-Iqbal I, Iqbal K (1996) Alzheimer’s disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules. Nat Med 2:783–787

CAS  PubMed  Google Scholar 

Alonso A, Grundke-Iqbal I, Barra HS, Iqbal K (1997) Abnormal phosphorylation of tau and the mechanism of Alzheimer neurofibrillary degeneration: sequestration of microtubule-associated proteins 1 and 2 and the disassembly of microtubules by the abnormal tau. Proc Natl Acad Sci U S A 94:298–303

CAS  PubMed  PubMed Central  Google Scholar 

Alonso A, Li B, Grundke-Iqbal I, Iqbal K (2006) Polymerization of hyperphosphorylated tau into filaments eliminates its inhibitory activity. Proc Natl Acad Sci USA 103:8864–8869

CAS  Google Scholar 

Alonso A, Cohen L, Corbo C, Morozova V, ElIdrissi A, Phillips G, Kleiman F (2018) Hyperphosphorylation of tau associates with changes in its function beyond microtubule stability. Front Cell Neurosci 12:338

CAS  PubMed  PubMed Central  Google Scholar 

Amos L, van den Ent F, Löwe J (2004) Structural/functional homology between the bacterial and eukaryotic cytoskeletons. Curr Opin Cell Biol 16:24–31

CAS  PubMed  Google Scholar 

Ando K, Maruko-Otake A, Ohtake Y, Hayashishita M, Sekiya M, Iijima KM (2016) Stabilization of microtubule-unbound tau via tau phosphorylation at Ser262/356 by Par-1/MARK contributes to augmentation of AD-related phosphorylation and Aβ42-induced tau toxicity. PLoS Genet 12:e1005917

PubMed  PubMed Central  Google Scholar 

Baird FJ, Bennett CL (2013) Microtubule defects and neurodegeneration. J Genet Syndr Gene Ther 4:203

PubMed  PubMed Central  Google Scholar 

Barón-Mendoza I, García O, Calvo-Ochoa E, Rebollar-García JO, Garzón-Cortés D, Haro R, González-Arenas A (2018) Alterations in neuronal cytoskeletal and astrocytic proteins content in the brain of the autistic-like mouse strain C58/J. Neurosci Lett 682:32–38

PubMed  Google Scholar 

Bayley P, Schilstra M, Martin S (1990) Microtubule dynamic instability: numerical simulation of microtubule transition properties using a Lateral Cap model. J Cell Sci 95:33–48

PubMed  Google Scholar 

Benitez-King G, Ramírez-Rodríguez G, Ortíz L, Meza I (2004) The neuronal cytoskeleton as a potential therapeutical target in neurodegenerative diseases and schizophrenia. Curr Drug Targets CNS Neurol Disord 3:515–533

CAS  PubMed  Google Scholar 

Binet S, Meininger V (1988) Modifications of microtubule proteins in ALS nerve precede detectable histologic and ultrastructural changes. Neurology 38:1596–1600

CAS  PubMed  Google Scholar 

Bodakuntla S, Schnitzler A, Villablanca C, Gonzalez-Billault C, Bieche I, Janke C, Magiera MM (2020) Tubulin polyglutamylation is a general traffic-control mechanism in hippocampal neurons. J Cell Sci. https://doi.org/10.1242/jcs.241802

Article  PubMed  Google Scholar 

Bodakuntla S, Janke C, Magiera MM (2021a) Tubulin polyglutamylation, a regulator of microtubule functions, can cause neurodegeneration. Neurosci Lett 746:135656

CAS  PubMed  Google Scholar 

Bodakuntla S, Yuan X, Genova M, Gadadhar S, Leboucher S, Birling MC, Klein D, Martini R, Janke C, Magiera MM (2021b) Distinct roles of α- and β-tubulin polyglutamylation in controlling axonal transport and in neurodegeneration. EMBO J 40:e108498

CAS  PubMed  PubMed Central  Google Scholar 

Bork P, Sander C, Valencia A (1992) An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. Proc Natl Acad Sci U S A 89:7290–7294

CAS  PubMed  PubMed Central  Google Scholar 

Boutté AM, Neely MD, Bird TD, Montine KS, Montine TJ (2005) Diminished taxol/GTP-stimulated tubulin polymerization in diseased region of brain from patients with late-onset or inherited Alzheimer’s disease or frontotemporal dementia with parkinsonism linked to chromosome-17 but not individuals with mild cognitive impairment. J Alzheimers Dis 8:1–6

PubMed  Google Scholar 

Boutte AM, Woltjer RL, Zimmerman LJ, Stamer SL, Montine KS, Manno MV, Cimino PJ, Liebler DC, Montine TJ (2006) Selectively increased oxidative modifications mapped to detergent-insoluble forms of Abeta and beta-III tubulin in Alzheimer’s disease. FASEB J 20:1473–1483

CAS  PubMed  Google Scholar 

Bray D (2000) Cell Movements: From Molecules to Motility. Garland Science, Now York

Google Scholar 

Brunden KR, Lee VM, Smith AB, Trojanowski JQ, Ballatore C (2017) Altered microtubule dynamics in neurodegenerative disease: therapeutic potential of microtubule-stabilizing drugs. Neurobiol Dis 105:328–335

CAS  PubMed  Google Scholar 

Busche MA, Hyman BT (2020) Synergy between amyloid-β and tau in Alzheimer’s disease. Nat Neurosci 23:1183–1193

CAS  PubMed  Google Scholar 

Cabrera JR, Lucas JJ (2017) MAP2 splicing is altered in Huntington’s disease. Brain Pathol 27:181–189

CAS  PubMed  Google Scholar 

Caplow M, Shanks J (1996) Evidence that a single monolayer tubulin-GTP cap is both necessary and sufficient to stabilize microtubules. Mol Biol Cell 7:663–675

CAS  PubMed  PubMed Central  Google Scholar 

Carballido-López R, Errington JA (2003) A dynamic bacterial cytoskeleton. Trends Cell Biol 13:577–583

PubMed  Google Scholar 

Carlier M, Didry D, Pantaloni D (1987) Microtubule elongation and guanosine 5’- triphosphate hydrolysis. Role of guanine nucleotides in microtubule dynamics. Biochemistry 26:4428–4437

CAS  PubMed  Google Scholar 

Carroll T, Guha S, Nehrke K, Johnson G (2021) Tau post-translational modifications: potentiators of selective vulnerability in sporadic Alzheimer’s disease. Biology 10:1047

CAS  PubMed  PubMed Central  Google Scholar 

Chen WW, Zhang X, Huang WJ (2016) Role of neuroinflammation in neurodegenerative diseases. Mol Med Rep 13:3391–3396

CAS  PubMed  PubMed Central  Google Scholar 

Chen J, Zhao D, Zhu M, Zhang M, Hou X, Ding W, Sun S, Bu W, Feng L, Ma S, Jia X (2017) Paeoniflorin ameliorates AGEs-induced mesangial cell injury through inhibiting RAGE/mTOR/autophagy pathway. Biomed Pharmacother 89:1362–1369

CAS  PubMed  Google Scholar 

Cianfrocco M, DeSantis M, Leschziner A, Reck-Peterson S (2015) Mechanism and regulation of cytoplasmic dynein. Annu Rev Cell Dev Biol 31:83–108

CAS  PubMed  PubMed Central  Google Scholar 

Cooper GM (2000) The Cell: A Molecular Approach, 2nd edn. Sinauer Associates, Sunderland (MA)

Google Scholar 

Cote R, Borisy G (1981) Head-to-tail polymerization of microtubules in vitro. J Mol Biol 150:577–599

CAS  PubMed  Google Scholar 

Crockett A (2021) Microtubules, myelin sheaths, and altered behavior. eNeuro. https://doi.org/10.1523/ENEURO.0520-20.2020

Article  PubMed  PubMed Central  Google Scholar 

de Boer P, Crossley R, Rothfield L (1992) The essential bacterial cell-division protein FtsZ is a GTPase. Nature 359:254–256

PubMed  Google Scholar 

Derisbourg M, Leghay C, Chiappetta G, Fernandez-Gomez FJ, Laurent C, Demeyer D, Carrier S, Buée-Scherrer V, Blum D, Vinh J, Sergeant N, Verdier Y, Buée L, Hamdane M (2015) Role of the tau N-terminal region in microtubule stabilization revealed by new endogenous truncated forms. Sci Rep 5:9659

CAS  PubMed  PubMed Central  Google Scholar 

Di J, Cohen L, Corbo C, Phillips G, Idrissi A, Alonso A (2016) Abnormal tau induces cognitive impairment through two different mechanisms: synaptic dysfunction and neuronal loss. Sci Rep 6:20833

CAS  PubMed  PubMed Central  Google Scholar 

Diaz-Corrales FJ, Asanuma M, Miyazaki I, Miyoshi K, Ogawa N (2005) Rotenone induces aggregation of gamma-tubulin protein and subsequent disorganization of the centrosome: relevance to formation of inclusion bodies and neurodegeneration. Neuroscience 133:117–135

CAS  PubMed  Google Scholar 

Dimitrov A, Quesnoit M, Moutel S, Cantaloube I, Poüs C, Perez F (2008) Detection of GTP-tubulin conformation in vivo reveals a role for GTP remnants in microtubule rescues. Science 322:1353–1356

CAS  PubMed  Google Scholar 

Ding H, Dolan FJ, Johnson G (2018) Histone deacetylase 6 interacts with the microtubule-associated protein tau. J Neurochem 106:2119–2130

Google Scholar 

DiProspero NA, Chen EY, Charles V, Plomann M, Kordower JH, Tagle DA (2004) Early changes in Huntington’s disease patient brains involve alterations in cytoskeletal and synaptic elements. J Neurocytol 33:517–533

PubMed  Google Scholar 

Drechsel D, Kirschner M (1994) The minimum GTP cap required to stabilize microtubules. Curr Biol 4:1053–1061

CAS  PubMed  Google Scholar 

Dugger BN, Dickson DW (2017) Pathology of neurodegenerative diseases. Cold Spring Harb Perspect Biol 9:a028035

PubMed  PubMed Central  Google Scholar 

Dustin P (1984) Microtubules. Springer, Berlin-Heidelberg

Google Scholar 

Epremyan KK, Goleva TN, Zvyagilskaya RA (2022) Effect of tau protein on mitochondrial functions. Biochem Mosc 87:689–701

CAS  Google Scholar 

Erber A, Riemer D, Bovenschulte M, Weber K (1984) Molecular phylogeny of metazoan intermediate filament proteins. J Mol Evol 47:751–762

Google Scholar 

Esue O, Cordero M, Wirtz D, Tseng Y (2005) The assembly of MreB, a prokaryotic homolog of actin. J Biol Chem 280:2628–2635

CAS 

留言 (0)

沒有登入
gif