Artificial intelligence and automation in endoscopy and surgery

Darzi, A. & Munz, Y. The impact of minimally invasive surgical techniques. Annu. Rev. Med. 55, 223–237 (2004).

CAS  PubMed  Google Scholar 

Clancy, N. T., Jones, G., Maier-Hein, L., Elson, D. S. & Stoyanov, D. Surgical spectral imaging. Med. Image Anal. 63, 101699 (2020).

PubMed  PubMed Central  Google Scholar 

Stoyanov, D. Surgical vision. Ann. Biomed. Eng. 40, 332–345 (2012).

PubMed  Google Scholar 

Ahmad, O. F. et al. Artificial intelligence and computer-aided diagnosis in colonoscopy: current evidence and future directions. Lancet Gastroenterol. Hepatol. 4, 71–80 (2019).

PubMed  Google Scholar 

Kaul, V., Enslin, S. & Gross, S. A. History of artificial intelligence in medicine. Gastrointest. Endosc. 92, 807–812 (2020).

PubMed  Google Scholar 

Jin, Z. et al. Deep learning for gastroscopic images: computer-aided techniques for clinicians. Biomed. Eng. Online https://doi.org/10.1186/s12938-022-00979-8 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Maier-Hein, L. et al. Surgical data science-from concepts toward clinical translation. Med. Image Anal. 76, 102306 (2022).

PubMed  Google Scholar 

Maier-Hein, L. et al. Surgical data science for next-generation interventions. Nat. Biomed. Eng. 1, 691–696 (2017).

PubMed  Google Scholar 

Vercauteren, T., Unberath, M., Padoy, N. & Navab, N. CAI4CAI: the rise of contextual artificial intelligence in computer-assisted interventions. Proc. IEEE Inst. Electr. Electron. Eng. 108, 198–214 (2020).

PubMed  Google Scholar 

Le Berre, C. et al. Application of artificial intelligence to gastroenterology and hepatology. Gastroenterology 158, 76–94 (2019).

PubMed  Google Scholar 

Chadebecq, F., Vasconcelos, F., Mazomenos, E. & Stoyanov, D. Computer vision in the surgical operating room. Visc. Med. 36, 456–462 (2020).

PubMed  PubMed Central  Google Scholar 

Goodfellow, I.J. & Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016).

Mori, Y. et al. Novel computer-aided diagnostic system for colorectal lesions by using endocytoscopy (with videos). Gastrointest. Endosc. 81, 621–629 (2015).

PubMed  Google Scholar 

Bernal, J. et al. Comparative validation of polyp detection methods in video colonoscopy: results from the MICCAI 2015 endoscopic vision challenge. IEEE Trans. Med. Imaging 36, 1231–1249 (2017).

PubMed  Google Scholar 

Singh, H. et al. The reduction in colorectal cancer mortality after colonoscopy varies by site of the cancer. Gastroenterology 139, 1128–1137 (2010).

PubMed  Google Scholar 

Zhao, S. et al. Magnitude, risk factors, and factors associated with adenoma miss rate of tandem colonoscopy: a systematic review and meta-analysis. Gastroenterology 156, 1661–1674 (2019).

PubMed  Google Scholar 

Castaneda, D., Popov, V. B., Verheyen, E., Wander, P. & Gross, S. A. New technologies improve adenoma detection rate, adenoma miss rate, and polyp detection rate: a systematic review and meta-analysis. Gastrointest. Endosc. 88, 209–222 (2018).

PubMed  Google Scholar 

Sánchez-Peralta, L. F., Bote-Curiel, L., Picón, A., Sánchez-Margallo, F. M. & Pagador, J. B. Deep learning to find colorectal polyps in colonoscopy: a systematic literature review. Artif. Intell. Med. 108, 101823 (2020).

Google Scholar 

Wang, P. et al. Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy. Nat. Biomed. Eng. 2, 741–748 (2018).

PubMed  Google Scholar 

Areia, M. et al. Cost-effectiveness of artificial intelligence for screening colonoscopy: a modelling study. Lancet Digit. Health 4, 436–444 (2022).

Google Scholar 

Bernal, J., Sánchez, J. & Vilariño, F. Towards automatic polyp detection with a polyp appearance model. Pattern Recognit. 45, 3166–3182 (2012).

Google Scholar 

Vazquez, D. et al. A benchmark for endoluminal scene segmentation of colonoscopy images. J. Healthc. Eng. 2017, 1–9 (2017).

Google Scholar 

Yuan, Z. et al. Automatic polyp detection in colonoscopy videos. J. Med. Imaging 10133, 1–10 (2017).

Google Scholar 

Mo, X., Tao, K., Wang, Q. & Wang, G. An efficient approach for polyps detection in endoscopic videos based on faster R-CNN. Int. Conf. Pattern Recognit. 2018, 3929–3934 (2018).

Google Scholar 

Lee, J. Y. et al. Real-time detection of colon polyps during colonoscopy using deep learning: systematic validation with four independent datasets. Sci. Rep. 10, 8379 (2020).

CAS  PubMed  PubMed Central  Google Scholar 

Spadaccini, M. et al. Computer-aided detection versus advanced imaging for detection of colorectal neoplasia: a systematic review and network meta-analysis. Lancet Gastroenterol. Hepatol. 6, 794–802 (2021).

Google Scholar 

Hussein, M. et al. A new artificial intelligence system successfully detects and localises early neoplasia in Barrett’s esophagus by using convolutional neural networks. United European Gastroenterol. J. 10, 528–537 (2022).

PubMed  PubMed Central  Google Scholar 

Hou, W. et al. Early neoplasia identification in Barrett’s esophagus via attentive hierarchical aggregation and self-distillation. Med. Image Anal. 72, 102092 (2021).

PubMed  Google Scholar 

Maier-Hein, L. et al. Why rankings of biomedical image analysis competitions should be interpreted with care. Nat. Commun. 9, 5217 (2018).

CAS  PubMed  PubMed Central  Google Scholar 

Wallace, M. B. et al. Impact of artificial intelligence on miss rate of colorectal neoplasia. Gastroenterology 163, 295–304 (2022).

PubMed  Google Scholar 

Van Berkel, N. et al. Initial responses to false positives in AI-supported continuous interactions: a colonoscopy case study. ACM Trans. Interact. Intell. Syst. 12, 1–18 (2022).

Google Scholar 

Pannala, R. et al. Artificial intelligence in gastrointestinal endoscopy. Videogie 5, 598–613 (2020).

PubMed  PubMed Central  Google Scholar 

Singh, D. & Singh, B. Effective and efficient classification of gastrointestinal lesions: combining data preprocessing, feature weighting, and improved ant lion optimization. J. Ambient. Intell. Humaniz. Comput. 12, 8683–8698 (2021).

Google Scholar 

Mesejo, P. et al. Computer-aided classification of gastrointestinal lesions in regular colonoscopy. IEEE Trans. Med. Imaging 35, 2051–2063 (2016).

PubMed  Google Scholar 

Byrne, M. F. et al. Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model. Gut 68, 94–100 (2019).

PubMed  Google Scholar 

Patel, K. et al. A comparative study on polyp classification using convolutional neural networks. PLoS ONE 15, 1–16 (2020).

Google Scholar 

Li, K. et al. Colonoscopy polyp detection and classification: dataset creation and comparative evaluations. PLoS ONE 16, 1–26 (2021).

Google Scholar 

Nogueira-Rodríguez, A. et al. Deep neural networks approaches for detecting and classifying colorectal polyps. Neurocomputing 423, 721–734 (2021).

Google Scholar 

Ozawa, T. Automated endoscopic detection and classification of colorectal polyps using convolutional neural networks. Ther. Adv. Gastroenterol. 13, 1–13 (2020).

Google Scholar 

Zorron Cheng Tao Pu, L. et al. Randomised controlled trial comparing modified Sano’s and narrow band imaging international colorectal endoscopic classifications for colorectal lesions. World J. Gastrointest. Endosc. 10, 210–218 (2018).

Google Scholar 

Zorron Cheng Tao Pu, L. et al. Computer-aided diagnosis for characterization of colorectal lesions: comprehensive software that includes differentiation of serrated lesions. Gastrointest. Endosc. 92, 891–899 (2020).

PubMed  Google Scholar 

Takeda, K. et al. Accuracy of diagnosing invasive colorectal cancer using computer-aided endocytoscopy. Endoscopy 49, 798–802 (2017).

PubMed  Google Scholar 

Ito, N. et al. Endoscopic diagnostic support system for cT1b colorectal cancer using deep learning. Oncology 96, 44–50 (2019).

PubMed  Google Scholar 

Ahmad, O. F. et al. Performance of artificial intelligence for detection of subtle and advanced colorectal neoplasia. Dig. Endosc. 34, 862–869 (2022).

PubMed  Google Scholar 

Endoscopic Classification Review Group. Update on the Paris classification of superficial neoplastic lesions in the digestive tract. Endoscopy 37, 570–578 (2005).

Google Scholar 

Kominami, Y. et al. Computer-aided diagnosis of colorectal polyp histology by using a real-time image recognition system and narrow-band imaging magnifying colonoscopy. Gastrointest. Endosc. 83, 643–649 (2016).

PubMed  Google Scholar 

Jin, E. H. et al. Improved accuracy in optical diagnosis of colorectal polyps using convolutional neural networks with visual explanations. Gastroenterology 158, 2169–2179 (2020).

PubMed  Google Scholar 

Cybernet. EndoBRAIN®-EYE, AI-equipped colorectal endoscopy diagnosis support software part 2; acquisition of approval under Pharmaceutical and Medical Device act (PMD act). Cybernet https://www.cybernet.jp/english/documents/pdf/news/press/2020/20200129.pdf (2020).

Münzer, B., Schoeffmann, K. & Böszörmenyi, L. Content-based processing and analysis of endoscopic images and videos: a survey. Multimed. Tools Appl. 77, 1323–1362 (2018).

Google Scholar 

Wu, H. et al. Semantic SLAM based on deep learning in endocavity environment. Symmetry 14, 614 (2022).

Google Scholar 

Freedman, D. et al. Detecting deficient coverage in colonoscopies. IEEE Trans. Med. Imaging 39, 3451–3462 (2020).

PubMed  Google Scholar 

Hartley, R. & Zisserman, A. Multiple View Geometry in Computer Vision 2nd edn (Cambridge University Press, 2003).

Mur-Artal, R., Montiel, J. M. M. & Tardos, J. D. ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans. Robot. 31, 1147–1163 (2015).

Google Scholar 

Mahmoud, N. et al. in Computer-Assisted and Robotic Endoscopy CARE 2016 Vol. 10170, 72–83 (Springer, 2017).

Mahmoud, N. et al. SLAM based quasi dense reconstruction for minimally invasive surgery scenes. IEEE Int. Conf. Robot. Autom. Workshop C4 2017, 1–5 (2017).

Google Scholar 

Mahmoud, N. et al. Live tracking and dense reconstruction for handheld monocular endoscopy. IEEE Trans. Med. Imaging 38, 79–89 (2019).

PubMed  Google Scholar 

Docea, R. et al. Simultaneous localisation and mapping for laparoscopic liver navigation: a comparative evaluation study. J. Med. Imaging 11598, 62–76 (2021).

Google Scholar 

Parashar, S., Pizarro, D. & Bartoli, A. Isometric non-rigid shape-from motion with Riemannian geometry solved in linear time. IEEE Trans. Pattern Anal. Mach. Intell. 40, 2442–2454 (2018).

PubMed  Google Scholar 

Lamarca, J., Parashar, S., Bartoli, A. & Montiel, J. M. M. DefSLAM: tracking and mapping of deforming scenes from monocular sequences. IEEE Trans. Robot. 37, 291–303 (2020).

Google Scholar 

Rodriguez, J. J. G., Lamarca, J., Morlana, J., Tardos, J. D. & Montiel, J. M. M. Sd-defslam: semi-direct monocular slam for deformable and intracorporeal scenes. IEEE Int. Conf. Robot. Autom. 2021, 5170–5177 (2021).

留言 (0)

沒有登入
gif