Severity of neonatal influenza infection is driven by type I interferon and oxidative stress

Resch, B., Kurath-Koller, S., Eibisberger, M. & Zenz, W. Prematurity and the burden of influenza and respiratory syncytial virus disease. World J. Pediatr. 12, 8–18 (2016).

PubMed  Google Scholar 

Dawood, F. S. et al. Burden of seasonal influenza hospitalization in children, United States, 2003 to 2008. J. Pediatr. 157, 808–814 (2010).

PubMed  Google Scholar 

Siegrist, C. A. Neonatal and early life vaccinology. Vaccine 19, 3331–3346 (2001).

CAS  PubMed  Google Scholar 

Mohr, E. & Siegrist, C. A. Vaccination in early life: standing up to the challenges. Curr. Opin. Immunol. 41, 1–8 (2016).

CAS  PubMed  Google Scholar 

Adkins, B., Leclerc, C. & Marshall-Clarke, S. Neonatal adaptive immunity comes of age. Nat. Rev. Immunol. 4, 553–564 (2004).

CAS  PubMed  Google Scholar 

Yu, J. C. et al. Innate immunity of neonates and infants. Front Immunol. 9, 1759 (2018).

PubMed  PubMed Central  Google Scholar 

Ogra, P. L., Welliver, R. C., Riepenhoff-Talty, M. & Faden, H. S. Interaction of mucosal immune system and infections in infancy: implications in allergy. Ann. Allergy 53, 523–534 (1984).

CAS  PubMed  Google Scholar 

Wilcox, D. R., Folmsbee, S. S., Muller, W. J. & Longnecker, R. The Type I interferon response determines differences in choroid plexus susceptibility between newborns and adults in herpes simplex virus encephalitis. MBio 7, e00437–00416 (2016).

CAS  PubMed  PubMed Central  Google Scholar 

McNab, F., Mayer-Barber, K., Sher, A., Wack, A. & O’Garra, A. Type I interferons in infectious disease. Nat. Rev. Immunol. 15, 87–103 (2015).

CAS  PubMed  PubMed Central  Google Scholar 

Jewell, N. A. et al. Differential type I interferon induction by respiratory syncytial virus and influenza a virus in vivo. J. Virol. 81, 9790–9800 (2007).

CAS  PubMed  PubMed Central  Google Scholar 

Bogunovic, D. Type I interferons in newborns-neurotoxicity versus antiviral defense. MBio 7, e00639–16 (2016).

Crotta, S. et al. Type I and type III interferons drive redundant amplification loops to induce a transcriptional signature in influenza-infected airway epithelia. PLoS Pathog. 9, e1003773 (2013).

PubMed  PubMed Central  Google Scholar 

Davidson, S., Crotta, S., McCabe, T. M. & Wack, A. Pathogenic potential of interferon alphabeta in acute influenza infection. Nat. Commun. 5, 3864 (2014).

CAS  PubMed  Google Scholar 

Davidson, S. et al. IFNlambda is a potent anti-influenza therapeutic without the inflammatory side effects of IFNalpha treatment. EMBO Mol. Med. 8, 1099–1112 (2016).

CAS  PubMed  PubMed Central  Google Scholar 

Durbin, J. E. et al. Type I IFN modulates innate and specific antiviral immunity. J. Immunol. 164, 4220–4228 (2000).

CAS  PubMed  Google Scholar 

Durbin, J. E. et al. The role of IFN in respiratory syncytial virus pathogenesis. J. Immunol. 168, 2944–2952 (2002).

CAS  PubMed  Google Scholar 

Durbin, R. K., Kotenko, S. V. & Durbin, J. E. Interferon induction and function at the mucosal surface. Immunol. Rev. 255, 25–39 (2013).

PubMed  PubMed Central  Google Scholar 

Arimori, Y. et al. Type I interferon limits influenza virus-induced acute lung injury by regulation of excessive inflammation in mice. Antivir. Res. 99, 230–237 (2013).

CAS  PubMed  Google Scholar 

Klinkhammer, J. et al. IFN-lambda prevents influenza virus spread from the upper airways to the lungs and limits virus transmission. Elife 7, e33354 (2018).

Galani, I. E. et al. Interferon-lambda mediates non-redundant front-line antiviral protection against influenza virus infection without compromising host fitness. Immunity 46, 875–890 e876 (2017).

CAS  PubMed  Google Scholar 

Lazear, H. M. & Diamond, M. S. New insights into innate immune restriction of West Nile virus infection. Curr. Opin. Virol. 11, 1–6 (2015).

CAS  PubMed  Google Scholar 

Wack, A., Terczynska-Dyla, E. & Hartmann, R. Guarding the frontiers: the biology of type III interferons. Nat. Immunol. 16, 802–809 (2015).

CAS  PubMed  PubMed Central  Google Scholar 

Akaike, T. et al. Pathogenesis of influenza virus-induced pneumonia: involvement of both nitric oxide and oxygen radicals. Proc. Natl Acad. Sci. USA 93, 2448–2453 (1996).

CAS  PubMed  PubMed Central  Google Scholar 

Lin, X. et al. The influenza virus H5N1 infection can induce ROS production for viral replication and host cell death in A549 cells modulated by human Cu/Zn superoxide dismutase (SOD1) Overexpression. Viruses 8, 13 (2016).

Hosakote, Y. M., Liu, T., Castro, S. M., Garofalo, R. P. & Casola, A. Respiratory syncytial virus induces oxidative stress by modulating antioxidant enzymes. Am. J. Respir. Cell Mol. Biol. 41, 348–357 (2009).

CAS  PubMed  PubMed Central  Google Scholar 

Sgarbanti, R. et al. Redox regulation of the influenza hemagglutinin maturation process: a new cell-mediated strategy for anti-influenza therapy. Antioxid. Redox Signal. 15, 593–606 (2011).

CAS  PubMed  Google Scholar 

Knobil, K., Choi, A. M., Weigand, G. W. & Jacoby, D. B. Role of oxidants in influenza virus-induced gene expression. Am. J. Physiol. 274, L134–L142 (1998).

CAS  PubMed  Google Scholar 

Bhattacharya, A. et al. Superoxide dismutase 1 protects hepatocytes from type i interferon-driven oxidative damage. Immunity 43, 974–986 (2015).

CAS  PubMed  PubMed Central  Google Scholar 

O’Donovan, D. J. & Fernandes, C. J. Free radicals and diseases in premature infants. Antioxid. Redox Signal 6, 169–176 (2004).

PubMed  Google Scholar 

Buonocore, G., Perrone, S. & Tataranno, M. L. Oxidative stress in the newborn. Oxid. Med. Cell. Longev. 2017, 1094247 (2017).

PubMed  PubMed Central  Google Scholar 

Perez, M., Robbins, M. E., Revhaug, C. & Saugstad, O. D. Oxygen radical disease in the newborn, revisited: oxidative stress and disease in the newborn period. Free Radic. Biol. Med. 142, 61–72 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

Saugstad, O. D. Bronchopulmonary dysplasia-oxidative stress and antioxidants. Semin Neonatol. 8, 39–49 (2003).

PubMed  Google Scholar 

Kumova, O. K. et al. Lung transcriptional unresponsiveness and loss of early influenza virus control in infected neonates is prevented by intranasal Lactobacillus rhamnosus GG. PLoS Pathog. 15, e1008072 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

Carey, A. J. et al. Rapid evolution of the CD8+ TCR repertoire in neonatal mice. J. Immunol. 196, 2602–2613 (2016).

CAS  PubMed  Google Scholar 

Virus interference: I. The interferon. By Alick Isaacs and Jean Lindenmann, 1957. CA Cancer J Clin 38, 280–290 (1988).

Ericsson, A. C. et al. The influence of caging, bedding, and diet on the composition of the microbiota in different regions of the mouse gut. Sci. Rep. 8, 4065 (2018).

PubMed  PubMed Central  Google Scholar 

Koerner, I., Kochs, G., Kalinke, U., Weiss, S. & Staeheli, P. Protective role of beta interferon in host defense against influenza A virus. J. Virol. 81, 2025–2030 (2007).

CAS  PubMed  Google Scholar 

Wu, W. et al. Early IFN-beta administration protects cigarette smoke exposed mice against lethal influenza virus infection without increasing lung inflammation. Sci. Rep. 12, 4080 (2022).

CAS  PubMed  PubMed Central  Google Scholar 

Yoo, J. K., Baker, D. P. & Fish, E. N. Interferon-beta modulates type 1 immunity during influenza virus infection. Antivir. Res. 88, 64–71 (2010).

CAS  PubMed  Google Scholar 

Drajac, C. et al. Control of IFN-I responses by the aminopeptidase IRAP in neonatal C57BL/6 alveolar macrophages during RSV infection. Mucosal Immunol. 14, 949–962 (2021).

CAS  PubMed  PubMed Central  Google Scholar 

Lin, S. J. et al. The pathological effects of CCR2+ inflammatory monocytes are amplified by an IFNAR1-triggered chemokine feedback loop in highly pathogenic influenza infection. J. Biomed. Sci. 21, 99 (2014).

PubMed  PubMed Central  Google Scholar 

La Gruta, N. L., Kedzierska, K., Stambas, J. & Doherty, P. C. A question of self-preservation: immunopathology in influenza virus infection. Immunol. Cell Biol. 85, 85–92 (2007).

PubMed  Google Scholar 

Terrazas, C. et al. Ly6C(hi) inflammatory monocytes promote susceptibility to Leishmania donovani infection. Sci. Rep. 7, 14693 (2017).

PubMed  PubMed Central  Google Scholar 

Ng, S. L., Teo, Y. J., Setiagani, Y. A., Karjalainen, K. & Ruedl, C. Type 1 conventional CD103(+) dendritic cells control effector CD8(+) T cell migration, survival, and memory responses during influenza infection. Front. Immunol. 9, 3043 (2018).

CAS  PubMed  PubMed Central  Google Scholar 

Glennon-Alty, L., Moots, R. J., Edwards, S. W. & Wright, H. L. Type I interferon regulates cytokine-delayed neutrophil apoptosis, reactive oxygen species production and chemokine expression. Clin. Exp. Immunol. 203, 151–159 (2021).

CAS  PubMed  Google Scholar 

Ye, S., Lowther, S. & Stambas, J. Inhibition of reactive oxygen species production ameliorates inflammation induced by influenza A viruses via upregulation of SOCS1 and SOCS3. J. Virol. 89, 2672–2683 (2015).

PubMed  Google Scholar 

To, E. E. et al. Mitochondrial reactive oxygen species contribute to pathological inflammation during influenza A virus infection in mice. Antioxid. Redox Signal. 32, 929–942 (2020).

CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif