Arc controls alcohol cue relapse by a central amygdala mechanism

American Psychiatric Association, American Psychiatric Association, editors. Diagnostic and statistical manual of mental disorders: DSM-5. 5th ed. Washington, D.C: American Psychiatric Association; 2013.

Carvalho AF, Heilig M, Perez A, Probst C, Rehm J. Alcohol use disorders. Lancet. 2019;394:781–92.

PubMed  Google Scholar 

Sinha R. How does stress lead to risk of alcohol relapse? Alcohol Res. 2012;34:432–40.

PubMed  PubMed Central  Google Scholar 

Sinha R, Li CSR. Imaging stress- and cue-induced drug and alcohol craving: association with relapse and clinical implications. Drug Alcohol Rev. 2007;26:25–31.

PubMed  Google Scholar 

Venniro M, Caprioli D, Shaham Y Animal models of drug relapse and craving. Progress in Brain Research, vol. 224, Elsevier; 2016. p. 25–52.

Mantsch JR, Baker DA, Funk D, Lê AD, Shaham Y. Stress-induced reinstatement of drug seeking: 20 years of progress. Neuropsychopharmacology. 2016;41:335–56.

CAS  PubMed  Google Scholar 

Crombag HS, Bossert JM, Koya E, Shaham Y. Context-induced relapse to drug seeking: a review. Philos Trans R Soc Lond B Biol Sci. 2008;363:3233–43.

PubMed  PubMed Central  Google Scholar 

Ray LA, Roche DJO. Neurobiology of craving: current findings and new directions. Curr Addict Rep. 2018;5:102–9.

Google Scholar 

Ron D, Barak S. Molecular mechanisms underlying alcohol-drinking behaviours. Nat Rev Neurosci. 2016;17:576–91.

CAS  PubMed  PubMed Central  Google Scholar 

Stefaniuk M, Beroun A, Lebitko T, Markina O, Leski S, Meyza K, et al. Matrix Metalloproteinase-9 and synaptic plasticity in the central amygdala in control of alcohol-seeking behavior. Biol Psychiatry. 2017;81:907–17.

CAS  PubMed  Google Scholar 

Warlow SM, Robinson MJF, Berridge KC. Optogenetic central amygdala stimulation intensifies and narrows motivation for cocaine. J Neurosci. 2017;37:8330–48.

CAS  PubMed  PubMed Central  Google Scholar 

Warlow SM, Naffziger EE, Berridge KC. The central amygdala recruits mesocorticolimbic circuitry for pursuit of reward or pain. Nat Commun. 2020;11:2716.

CAS  PubMed  PubMed Central  Google Scholar 

Douglass AM, Kucukdereli H, Ponserre M, Markovic M, Gründemann J, Strobel C, et al. Central amygdala circuits modulate food consumption through a positive-valence mechanism. Nat Neurosci. 2017;20:1384–94.

CAS  PubMed  Google Scholar 

Robinson MJF, Warlow SM, Berridge KC. Optogenetic excitation of central amygdala amplifies and narrows incentive motivation to pursue one reward above another. J Neurosci. 2014;34:16567–80.

CAS  PubMed  PubMed Central  Google Scholar 

Radwanska K, Wrobel E, Korkosz A, Rogowski A, Kostowski W, Bienkowski P, et al. Alcohol relapse induced by discrete cues activates components of AP-1 transcription factor and ERK pathway in the rat basolateral and central amygdala. Neuropsychopharmacology. 2008;33:1835–46.

Li X, Zeric T, Kambhampati S, Bossert JM, Shaham Y. The central amygdala nucleus is critical for incubation of methamphetamine craving. Neuropsychopharmacology. 2015;40:1297–306.

CAS  PubMed  PubMed Central  Google Scholar 

Kruzich PJ, See RE. Differential contributions of the basolateral and central amygdala in the acquisition and expression of conditioned relapse to cocaine-seeking behavior. J Neurosci. 2001;21:RC155.

CAS  PubMed  PubMed Central  Google Scholar 

Lu L, Hope BT, Dempsey J, Liu SY, Bossert JM, Shaham Y. Central amygdala ERK signaling pathway is critical to incubation of cocaine craving. Nat Neurosci. 2005;8:212–9.

CAS  PubMed  Google Scholar 

Knapska E, Radwanska K, Werka T, Kaczmarek L. Functional internal complexity of amygdala: focus on gene activity mapping after behavioral training and drugs of abuse. Physiol Rev. 2007;87:1113–73.

CAS  PubMed  Google Scholar 

Shepherd JD, Bear MF. New views of Arc, a master regulator of synaptic plasticity. Nat Neurosci. 2011;14:279–84.

CAS  PubMed  PubMed Central  Google Scholar 

Nikolaienko O, Patil S, Eriksen MS, Bramham CR. Arc protein: a flexible hub for synaptic plasticity and cognition. Semin Cell Dev Biol. 2018;77:33–42.

CAS  PubMed  Google Scholar 

Plath N, Ohana O, Dammermann B, Errington ML, Schmitz D, Gross C, et al. Arc/Arg3.1 is essential for the consolidation of synaptic plasticity and memories. Neuron. 2006;52:437–44.

CAS  PubMed  Google Scholar 

Shepherd JD, Rumbaugh G, Wu J, Chowdhury S, Plath N, Kuhl D, et al. Arc/Arg3.1 mediates homeostatic synaptic scaling of AMPA receptors. Neuron. 2006;52:475–84.

CAS  PubMed  PubMed Central  Google Scholar 

Chowdhury S, Shepherd JD, Okuno H, Lyford G, Petralia RS, Plath N, et al. Arc interacts with the endocytic machinery to regulate AMPA receptor trafficking. Neuron. 2006;52:445–59.

CAS  PubMed  PubMed Central  Google Scholar 

Nielsen LD, Pedersen CP, Erlendsson S, Teilum K. The Capsid domain of Arc changes its oligomerization propensity through direct interaction with the NMDA receptor. Structure. 2019;27:1071–81.e5.

CAS  PubMed  Google Scholar 

Alasmari F, Goodwani S, McCullumsmith RE, Sari Y. Role of glutamatergic system and mesocorticolimbic circuits in alcohol dependence. Prog Neurobiol. 2018;171:32–49.

CAS  PubMed  PubMed Central  Google Scholar 

Meyers JL, Salling MC, Almli LM, Ratanatharathorn A, Uddin M, Galea S, et al. Frequency of alcohol consumption in humans; the role of metabotropic glutamate receptors and downstream signaling pathways. Transl Psychiatry. 2015;5:e586.

CAS  PubMed  PubMed Central  Google Scholar 

Rao PSS, Bell RL, Engleman EA, Sari Y. Targeting glutamate uptake to treat alcohol use disorders. Front Neurosci. 2015;9:144.

CAS  PubMed  PubMed Central  Google Scholar 

Eisenhardt M, Leixner S, Luján R, Spanagel R, Bilbao A. Glutamate receptors within the mesolimbic dopamine system mediate alcohol relapse behavior. J Neurosci. 2015;35:15523–38.

CAS  PubMed  PubMed Central  Google Scholar 

Radwanska K, Kaczmarek L. Characterization of an alcohol addiction-prone phenotype in mice: Characterization of an alcohol addiction-prone phenotype. Addict Biol. 2012;17:601–12.

CAS  PubMed  Google Scholar 

Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819–23.

CAS  PubMed  PubMed Central  Google Scholar 

Schumann G, Loth E, Banaschewski T, Barbot A, Barker G, Büchel C, et al. The IMAGEN study: reinforcement-related behaviour in normal brain function and psychopathology. Mol Psychiatry. 2010;15:1128–39.

CAS  PubMed  Google Scholar 

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–8.

CAS  PubMed  Google Scholar 

Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods. 2014;11:783–4.

Hirano Y, Ihara K, Masuda T, Yamamoto T, Iwata I, Takahashi A, et al. Shifting transcriptional machinery is required for long-term memory maintenance and modification in Drosophila mushroom bodies. Nat Commun. 2016;7:13471.

CAS  PubMed  PubMed Central  Google Scholar 

IMAGEN Consortium, Mielenz D, Reichel M, Jia T, Quinlan EB, Stöckl T, et al. EFhd2/Swiprosin-1 is a common genetic determinator for sensation-seeking/low anxiety and alcohol addiction. Mol Psychiatry. 2018;23:1303–19.

Google Scholar 

Schilling S, DeStefano AL, Sachdev PS, Choi SH, Mather KA, DeCarli CD, et al. APOE genotype and MRI markers of cerebrovascular disease. Neurology. 2013;81:292–300.

CAS  PubMed  PubMed Central  Google Scholar 

Richardson NR, Roberts DC. Progressive ratio schedules in drug self-administration studies in rats: a method to evaluate reinforcing efficacy. J Neurosci Methods. 1996;66:1–11.

CAS  PubMed  Google Scholar 

Epstein DH, Preston KL, Stewart J, Shaham Y. Toward a model of drug relapse: An assessment of the validity of the reinstatement procedure. Psychopharmacology. 2006;189:1–16.

CAS  PubMed  PubMed Central  Google Scholar 

Namba MD, Tomek SE, Olive MF, Beckmann JS, Gipson CD. The winding road to relapse: forging a new understanding of cue-induced reinstatement models and their associated neural mechanisms. Front Behav Neurosci. 2018;12:17.

Deroche-Gamonet V. Evidence for addiction-like behavior in the rat. Science. 2004;305:1014–7.

CAS  PubMed  Google Scholar 

Chen X, Nelson CD, Li X, Winters CA, Azzam R, Sousa AA, et al. PSD-95 is required to sustain the molecular organization of the postsynaptic density. J Neurosci. 2011;31:6329–38.

CAS  PubMed  PubMed Central  Google Scholar 

Beroun A, Nalberczak-Skóra M, Harda Z, Piechota M, Ziółkowska M, Cały A, et al. Generation of silent synapses in dentate gyrus correlates with development of alcohol addiction. Neuropsychopharmacol. 2018;43:1989–99.

CAS  Google Scholar 

Nalberczak-Skóra M, Pattij T, Beroun A, Kogias G, Mielenz D, de Vries T, et al. Personality driven alcohol and drug abuse: new mechanisms revealed. Neurosci Biobehav Rev. 2020;116:64–73.

Google Scholar 

Venniro M, Russell TI, Ramsey LA, Richie CT, Lesscher HMB, Giovanetti SM, et al. Abstinence-dependent dissociable central amygdala microcircuits control drug craving. Proc Natl Acad Sci USA. 2020;117:8126–34.

CAS  PubMed  PubMed Central  Google Scholar 

Kim J, Zhang X, Muralidhar S, LeBlanc SA, Tonegawa S. Basolateral to central amygdala neural circuits for appetitive behaviors. Neuron 2017;93:1464–1479.e5.

CAS  PubMed  PubMed Central  Google Scholar 

Zakhari S. Alcohol metabolism and epigenetics changes. Alcohol Res. 2013;35:6–16.

留言 (0)

沒有登入
gif