Developing an internal threshold of toxicological concern (iTTC)

U.S. EPA. Assessing and Managing Chemicals under TSCA; The Frank R. Lautenberg Chemical Safety for the 21st Century Act. Washington, DC. 2017.

U.S. EPA. A Working Approach for Identifying Potential Candidate Chemicals for Prioritization. Washington, DC. 2018.

Health Canada. Overview of the Chemicals Management Plan. Ottawa, ON. 2017.

National Academies of Sciences Engineering, and Medicine. Using 21st Century Science to Improve Risk-Related Evaluations. The National Academies Press: Washington, DC. 2017.

Kavlock RJ, Bahadori T, Barton-Maclaren TS, Gwinn MR, Rasenberg M, Thomas RS. Accelerating the pace of chemical risk assessment. Chem Res Toxicol. 2018;31:287–90.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dix DJ, Houck KA, Martin M, Richard AM, Setzer RW, Kavlock RJ. The ToxCast program for prioritizing toxicity testing of environmental chemicals. Toxicol Sci. 2007;95:5–12.

Article  CAS  PubMed  Google Scholar 

Cohen Hubal EA, Richard A, Aylward L, Edwards S, Gallagher J, Goldsmith M-R, et al. Advancing exposure characterization for chemical evaluation and risk assessment. J Toxicol Environ Health Part B. 2010;13:299–313.

Article  CAS  Google Scholar 

Wambaugh JF, Setzer RW, Reif DM, Gangwal S, Mitchell-Blackwood J, Arnot JA, et al. High-throughput models for exposure-based chemical prioritization in the ExpoCast project. Environ Sci Technol. 2013;47:8479–88.

CAS  PubMed  Google Scholar 

Ring CL, Arnot JA, Bennett DH, Egeghy PP, Fantke P, Huang L, et al. Consensus modeling of median chemical intake for the U.S. population based on predictions of exposure pathways. Environ Sci Technol. 2019;53:719–32.

Article  CAS  PubMed  Google Scholar 

Frawley JP. Scientific evidence and common sense as a basis for food-packaging regulations. Food Cosmet Toxicol. 1967;5:293–308.

Article  CAS  PubMed  Google Scholar 

Munro IC, Ford RA, Kennepohl E, Sprenger JG. Correlation of structural class with no-observed-effect levels: A proposal for establishing a threshold of concern. Food Chem Toxicol. 1996;34:829–67.

Article  CAS  PubMed  Google Scholar 

Kroes R, Galli CL, Munro I, Schilter B, Tran L-A, Walker R, et al. Threshold of toxicological concern for chemical substances present in the diet: a practical tool for assessing the need for toxicity testing. Food Chem Toxicol. 2000;38:255–312.

Article  CAS  PubMed  Google Scholar 

Kroes R. The threshold of toxicological concern concept in risk assessment. Toxicol Sci. 2005;86:226–30.

Article  CAS  PubMed  Google Scholar 

Kroes R, Renwick AG, Cheeseman M, Kleiner J, Mangelsdorf I, Piersma A, et al. Structure-based thresholds of toxicological concern (TTC): guidance for application to substances present at low levels in the diet. Food Chem Toxicol. 2004;42:65–83.

Article  CAS  PubMed  Google Scholar 

Health Canada. Threshold of Toxicological Concern (TTC)-based Approach for Certain Substances. Ottawa, ON. 2016.

More SJ, Bampidis V, Benford D, Bragard C, Halldorsson TI, Hernández-Jerez AF, et al. Guidance on the use of the threshold of toxicological concern approach in food safety assessment. EFSA J. 2019;17:e05708.

PubMed  PubMed Central  Google Scholar 

U.S. Food and Drug Administration. Food Additives; Threshold of regulation for substances used in food-contact articles. In, 1995. pp 21 CFR Parts 25, 25, 170, 171, and 174. Docket Nos. 177P-0122 and 0192N-0181.

Munro IC, Renwick AG, Danielewska-Nikiel B. The threshold of toxicological concern (TTC) in risk assessment. Toxicol Lett. 2008;180:151–6.

Article  CAS  PubMed  Google Scholar 

EFSA (European Food Safety Authority) and WHO (World Health Organization). Review of the Threshold of Toxicological Concern (TTC) approach and development of new TTC decision tree. 2016.

Patlewicz G, Wambaugh JF, Felter SP, Simon TW, Becker RA. Utilizing threshold of toxicological concern (TTC) with high throughput exposure predictions (HTE) as a risk-based prioritization approach for thousands of chemicals. Comput Toxicol. 2018;7:58–67.

Article  PubMed  PubMed Central  Google Scholar 

Nelms MD, Patlewicz G. Derivation of new threshold of toxicological concern values for exposure via inhalation for environmentally-relevant chemicals. Front Toxicol. 2020;2:580347.

Safford RJ. The dermal sensitisation threshold - a TTC approach for allergic contact dermatitis. Regul Toxicol Pharm. 2008;51:195–200.

Article  CAS  Google Scholar 

Partosch F, Mielke H, Stahlmann R, Kleuser B, Barlow S, Gundert-Remy U. Internal threshold of toxicological concern values: enabling route-to-route extrapolation. Arch Toxicol. 2015;89:941–8.

Article  CAS  PubMed  Google Scholar 

Chebekoue SF, Krishnan K. Derivation of occupational thresholds of toxicological concern for systemically acting noncarcinogenic organic chemicals. Toxicol Sci. 2017;160:47–56.

Article  CAS  PubMed  Google Scholar 

Blackburn KL, Carr G, Rose JL, Selman BG. An interim internal threshold of toxicologic concern (iTTC) for chemicals in consumer products, with support from an automated assessment of ToxCast™ dose response data. Regul Toxicol Pharm. 2020;114:104656.

Bessems JGM Opinion on the usefulness of in vitro data for human risk assessment. Suggestions for better use of non-testing approaches National Institute for Public Health and the Environment (RIVM), 2009. Report no.: 320016002/2009.

Coecke S, Pelkonen O, Leite SB, Bernauer U, Bessems JGM, Bois FY, et al. Toxicokinetics as a key to the integrated toxicity risk assessment based primarily on non-animal approaches. Toxicol Vitr. 2013;27:1570–7.

Article  CAS  Google Scholar 

Ellison CA, Blackburn KL, Carmichael PL, Clewell HJ, Cronin MTD, Desprez B, et al. Challenges in working towards an internal threshold of toxicological concern (iTTC) for use in the safety assessment of cosmetics: Discussions from the Cosmetics Europe iTTC Working Group workshop. Regul Toxicol Pharm. 2019;103:63–72.

Article  CAS  Google Scholar 

Ellison CA, Api AM, Becker RA, Efremenko AY, Gadhia S, Hack CE, et al. Internal threshold of toxicological concern (iTTC): Where we are today and what is possible in the near future. Front Toxicol. 2021;2:621541.

Wetmore BA, Wambaugh JF, Allen B, Ferguson SS, Sochaski MA, Setzer RW, et al. Incorporating high-throughput exposure predictions with dosimetry-adjusted in vitro bioactivity to inform chemical toxicity testing. Toxicol Sci. 2015;148:121–36.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pearce RG, Setzer RW, Strope CL, Wambaugh JF, Sipes NS. httk: R Package for high-throughput toxicokinetics. J Stat Softw. 2017;79:1–26.

Article  PubMed  PubMed Central  Google Scholar 

Wambaugh JF, Hughes MF, Ring CL, MacMillan DK, Ford J, Fennell TR, et al. Evaluating in vitro-in vivo extrapolation of toxicokinetics. Toxicol Sci. 2018;163:152–69.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li L, Sangion A, Wania F, Armitage JM, Toose L, Hughes L, et al. Development and evaluation of a holistic and mechanistic modeling framework for chemical emissions, fate, exposure, and risk. Environ Health Persp. 2021;129:127006.

Article  Google Scholar 

Arnot JA, Brown TN, Wania F. Estimating screening-level organic chemical half-lives in humans. Environl Sci Technol. 2014;48:723–30.

Article  CAS  Google Scholar 

Papa E, Sangion A, Arnot JA, Gramatica P. Development of human biotransformation QSARs and application for PBT assessment refinement. Food Chem Toxicol. 2018;112:535–43.

Article  CAS  PubMed  Google Scholar 

OECD. Guidance Document on the Validation of (Quantitative)Structure-Activity Relationship [(Q)SAR] models. Organisation for Economic Cooperation and Development, Environment Directorate: Paris, 2007.

OECD. Test No. 417: Toxicokinetics. Organisation for Economic Cooperation and Development, Environment Directorate: Paris, 2010.

Cramer GM, Ford RA, Hall RL. Estimation of toxic hazard—A decision tree approach. Food Cosmet Toxicol. 1976;16:255–76.

Article  Google Scholar 

Bassan A, Fioravanzo E, Pavan M, Stocchero M. Applicability of physicochemical data, QSARs and read-across in threshold of toxicological concern assessment. EFSA Supporting Publ. 2011;8:159E.

Google Scholar 

Weininger D. SMILES, a chemical language and information-system.1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci. 1988;28:31–36.

Article  CAS  Google Scholar 

Kelly BC, Ikonomou MG, Blair JD, Morin AE, Gobas FAPC. Food web-specific biomagnification of persistent organic pollutants. Science 2007;317:236–9.

Article  CAS  PubMed  Google Scholar 

Arnot JA, Brown TN, Wania F, Breivik K, McLachlan MS. Prioritizing chemicals and data requirements for screening-level exposure and risk assessment. Environ Health Persp. 2012;120:1565–70.

Article  Google Scholar 

Lee Y-S, Lo JC, Otton SV, Moore MM, Kennedy CJ, Gobas FAPC. In vitro to in vivo extrapolation of biotransformation rates for assessing bioaccumulation of hydrophobic organic chemicals in mammals. Environ Toxicol Chem. 2017;36:1934–46.

Article  CAS  PubMed  Google Scholar 

Armitage JM, Hughes L, Sangion A, Arnot JA. Development and intercomparison of single and multicompartment physiologically-based toxicokinetic models: Implications for model selection and tiered modeling frameworks. Environ Int. 2021;154:106557.

Article  CAS  PubMed  Google Scholar 

Arnot JA, Mackay D. The influence of chemical degradation during dietary exposures to fish on biomagnification factors and bioaccumulation factors. Environ Sci Process Impacts. 2018;20:86–97.

Article  CAS  PubMed  Google Scholar 

Arnot JA, Toose L, Armitage JM, Embry M, Sangion A, Hughes L A weight of evidence approach for bioaccumulation assessment. Integr Environ Assess Manage. 2022; https://doi.org/10.1002/ieam.4583.

Dankovic DA, Naumann BD, Maier A, Dourson ML, Levy LS. The scientific basis of uncertainty factors used in setting occupational exposure limits. J Occup Environ Hyg. 2015;12:S55–S68.

Article  PubMed  PubMed Central  Google Scholar 

U.S. EPA. A Review of the Reference Dose and Reference Concentration Processes. U.S. Environmental Protection Agency, Risk Assessment Forum. Washington, DC. 2002.

Antunovic B, Barlow S, Chesson A, Flynn A, Hardy A, Jeger MJ, et al. Scientific Opinion on Exploring options for providing advice about possible human health risks based on the concept of threshold of toxicological concern (TTC). EFSA Journal. 2012;10:2750.

Leeman WR, Rouhani-Rankouhi T, Vogels J, Krul L. Relevance of bioaccumulating substances in the TTC concept. Regul Toxicol Pharm. 2016;77:42–48.

Article  CAS  Google Scholar 

Armitage JM, Wania F, Arnot JA. Application of mass balance models and the chemical activity concept to facilitate the use of in vitro toxicity data for risk assessment. Environ Sci Technol. 2014;48:9770–9.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif