Exposure forecasting – ExpoCast – for data-poor chemicals in commerce and the environment

Zartarian V, Bahadori T, McKone T Adoption of an official ISEA glossary. Journal of Exposure Analysis & Environmental Epidemiology 15 2005.

Mattingly CJ, McKone TE, Callahan MA, Blake JA, Cohen Hubal EA. Providing the missing link: the exposure science ontology ExO. Environ Sci Technol. 2012;46:3046–53.

CAS  PubMed  PubMed Central  Google Scholar 

Meyer DE, Bailin SC, Vallero D, Egeghy PP, Liu SV, Hubal EAC. Enhancing life cycle chemical exposure assessment through ontology modeling. Sci Total Environ. 2020;712:136263.

CAS  PubMed  Google Scholar 

Nieuwenhuijsen M, Paustenbach D, Duarte-Davidson R. New developments in exposure assessment: the impact on the practice of health risk assessment and epidemiological studies. Environ Int. 2006;32:996–1009.

CAS  PubMed  Google Scholar 

Rosenbaum RK, Bachmann TM, Gold LS, Huijbregts MA, Jolliet O, Juraske R, et al. USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. The. Int J Life Cycle Assess. 2008;13:532–46.

CAS  Google Scholar 

Hertzberg RP, Pope AJ. High-throughput screening: new technology for the 21st century. Curr Opin Chem Biol. 2000;4:445–51.

CAS  PubMed  Google Scholar 

National Research Council. Toxicity testing in the 21st century: A vision and a strategy. National Academies Press, 2007.

Krewski D, Andersen ME, Tyshenko MG, Krishnan K, Hartung T, Boekelheide K, et al. Toxicity testing in the 21st century: progress in the past decade and future perspectives. Arch Toxicol. 2020;94:1–58.

CAS  PubMed  Google Scholar 

Schmidt CW. TOX 21: new dimensions of toxicity testing. In: National Institute of Environmental Health Sciences, 2009.

Dix DJ, Houck KA, Martin MT, Richard AM, Setzer RW, Kavlock RJ. The ToxCast program for prioritizing toxicity testing of environmental chemicals. Toxicological Sci. 2006;95:5–12.

Google Scholar 

Cohen Hubal EA, Richard AM, Shah I, Gallagher J, Kavlock R, Blancato J, et al. Exposure science and the U.S. EPA National Center for Computational Toxicology. J Exposure Sci Environ Epidemiol. 2010;20:231–6.

CAS  Google Scholar 

Rager JE, Fry RC. Systems biology and environmental exposures. Network Biology: Theories, Methods and Applications (WJ Zhang, ed) 2013. 81–132.

Kavlock RJ, Bahadori T, Barton-Maclaren TS, Gwinn MR, Rasenberg M, Thomas RS. Accelerating the pace of chemical risk assessment. Chem Res Toxicol. 2018;31:287–90.

CAS  PubMed  PubMed Central  Google Scholar 

Cohen Hubal EA, Richard A, Aylward L, Edwards S, Gallagher J, Goldsmith M-R, et al. Advancing exposure characterization for chemical evaluation and risk assessment. J Toxicol Environ Health, Part B. 2010;13:299–313.

CAS  Google Scholar 

Judson R, Richard A, Dix DJ, Houck K, Martin M, Kavlock R, et al. The toxicity data landscape for environmental chemicals. Environ Health Perspect. 2009;117:685.

CAS  PubMed  Google Scholar 

Egeghy PP, Judson R, Gangwal S, Mosher S, Smith D, Vail J, et al. The exposure data landscape for manufactured chemicals. Sci Total Environ. 2012;414:159–66.

CAS  PubMed  Google Scholar 

Sheldon LS, Cohen Hubal EA. Exposure as part of a systems approach for assessing risk. Environ Health Perspect. 2009;117:1181–94.

PubMed Central  Google Scholar 

National Research Council. Risk Assessment in the Federal Government: Managing the Process. In; https://doi.org/10.17226/317. National Academies Press: Washington (DC), 1983.

World Health Organization Inter-Organization Programme for the Sound Management of Chemicals. IPCS risk assessment terminology. World Health Organization, 2004.

Breyer S. Breaking the Vicious Circle: Toward Effective Risk Regulation. Harvard University Press, 2009.

Anastas P, Teichman K, Hubal EC. Ensuring the safety of chemicals. J Exposure Sci Environ Epidemiol. 2010;20:395–6.

Google Scholar 

Nabholz JV. Environmental hazard and risk assessment under the United States toxic substances control act. Sci total Environ. 1991;109:649–65.

PubMed  Google Scholar 

Walker JD, Carlsen L. QSARs for identifying and prioritizing substances with persistence and bioconcentration potential. SAR QSAR Environ Res. 2002;13:713–25.

CAS  PubMed  Google Scholar 

Arnot JA, MacKay D, Webster E, Southwood JM. Screening level risk assessment model for chemical fate and effects in the environment. Environ Sci Technol. 2006;40:2316–23.

CAS  PubMed  Google Scholar 

Bennett DH, McKone TE, Evans JS, Nazaroff WW, Margni MD, Jolliet O, et al. Defining intake fraction. Environ Sci Technol. 2002;36:207–16.

Google Scholar 

Jolliet O, Ernstoff AS, Csiszar SA, Fantke P. Defining product intake fraction to quantify and compare exposure to consumer products. Environ Sci Technol. 2015;49:8924–31.

CAS  PubMed  Google Scholar 

Wallace LA. Comparison of risks from outdoor and indoor exposure to toxic chemicals. Environ Health Perspect. 1991;95:7–13.

CAS  PubMed  PubMed Central  Google Scholar 

McCurdy T, Glen G, Smith L, Lakkadi Y. The national exposure research laboratory’s consolidated human activity database. J Exposure Anal Environ Epidemiol. 2000;10:566–78.

CAS  Google Scholar 

Zartarian V, Glen G, Smith L, Xue J SHEDS-Multimedia model version 3 technical manual. US Environmental Protection Agency 2008.

Robinson JP, Silvers A. Measuring potential exposure to environmental pollutants: time spent with soil and time spent outdoors. J Exposure Sci Environ Epidemiol. 2000;10:341–54.

CAS  Google Scholar 

Wambaugh JF, Bare JC, Carignan CC, Dionisio KL, Dodson RE, Jolliet O, et al. New approach methodologies for exposure science. Curr Opin in Toxicol. 2019;15:76–92.

Egeghy PP, Vallero DA, Cohen Hubal EA. Exposure-based prioritization of chemicals for risk assessment. Environ Sci policy. 2011;14:950–64.

CAS  Google Scholar 

Mitchell J, Arnot JA, Jolliet O, Georgopoulos PG, Isukapalli S, Dasgupta S, et al. Comparison of modeling approaches to prioritize chemicals based on estimates of exposure and exposure potential. Sci Total Environ. 2013;458:555–67.

PubMed  Google Scholar 

MacLeod M, Scheringer M, McKone TE, Hungerbuhler K. The state of multimedia mass-balance modeling in environmental science and decision-making. Environ Sci Technol. 2010;44:8360–4.

CAS  PubMed  Google Scholar 

Huang L, Jolliet O. A parsimonious model for the release of volatile organic compounds (VOCs) encapsulated in products. Atmos Environ. 2016;127:223–35.

CAS  Google Scholar 

Cowan-Ellsberry CE, McLachlan MS, Arnot JA, MacLeod M, McKone TE, Wania F. Modeling exposure to persistent chemicals in hazard and risk assessment. Integr Environ Assess Manag. 2009;5:662–79.

CAS  PubMed  Google Scholar 

Katritzky AR, Lobanov VS, Karelson M. QSPR: the correlation and quantitative prediction of chemical and physical properties from structure. Chem Soc Rev. 1995;24:279–87.

CAS  Google Scholar 

Mansouri K, Grulke CM, Judson RS, Williams AJ. OPERA models for predicting physicochemical properties and environmental fate endpoints. J Cheminformatics. 2018;10:10.

Google Scholar 

Arnot JA, Brown TN, Wania F, Breivik K, McLachlan MS. Prioritizing chemicals and data requirements for screening-level exposure and risk assessment. Environ Health Perspect. 2012;120:1565–70.

PubMed  PubMed Central  Google Scholar 

Dudzina T, Delmaar CJ, Biesterbos JW, Bakker MI, Bokkers BG, Scheepers PT, et al. The probabilistic aggregate consumer exposure model (PACEM): validation and comparison to a lower-tier assessment for the cyclic siloxane D5. Environ Int. 2015;79:8–16.

CAS  PubMed  Google Scholar 

Phillips L, Moya J. The evolution of EPA’s Exposure Factors Handbook and its future as an exposure assessment resource. J Exposure Sci Environ Epidemiol. 2013;23:13–21.

Google Scholar 

Hall B, Tozer S, Safford B, Coroama M, Steiling W, Leneveu-Duchemin MC, et al. European consumer exposure to cosmetic products, a framework for conducting population exposure assessments. Food Chem Toxicol. 2007;45:2097–108.

CAS  PubMed  Google Scholar 

Comiskey D, Api A, Barrett C, Ellis G, McNamara C, O’Mahony C, et al. Integrating habits and practices data for soaps, cosmetics and air care products into an existing aggregate exposure model. Regulatory Toxicol Pharmacol. 2017;88:144–56.

CAS  Google Scholar 

Safford B, Api A, Barratt C, Comiskey D, Ellis G, McNamara C, et al. Application of the expanded Creme RIFM consumer exposure model to fragrance ingredients in cosmetic, personal care and air care products. Regulatory Toxicol Pharmacol. 2017;86:148–56.

CAS  Google Scholar 

Brandon N, Dionisio KL, Isaacs K, Tornero-Velez R, Kapraun D, Setzer RW, et al. Simulating exposure-related behaviors using agent-based models embedded with needs-based artificial intelligence. J Exposure Sci Environ Epidemiol. 2020;30:184–93.

Google Scholar 

Brandon N, Price PS. Calibrating an agent-based model of longitudinal human activity patterns using the Consolidated Human Activity Database. J Exposure Sci Environ Epidemiol. 2020;30:194–204.

Google Scholar 

Shin HM, Ernstoff A, Arnot JA, Wetmore BA, Csiszar SA, Fantke P, et al. Risk-based high-throughput chemical screening and prioritization using exposure models and in vitro bioactivity assays. Environ Sci Technol. 2015;49:6760–71.

CAS  PubMed  Google Scholar 

Oreskes N. Evaluation (not validation) of quantitative models. Environ Health Perspect. 1998;106:1453.

PubMed  PubMed Central  Google Scholar 

McKone TE, Castorina R, Harnly ME, Kuwabara Y, Eskenazi B, Bradman A. Merging models and biomonitoring data to characterize sources and pathways of human exposure to organophosphorus pesticides in the Salinas Valley of California. Environ Sci Technol. 2007;41:3233–40.

CAS  PubMed  Google Scholar 

Xue J, Zartarian V, Tornero-Velez R, Tulve NS. EPA’s SHEDS-multimedia model: Children’s cumulative pyrethroid exposure estimates and evaluation against NHANES biomarker data. Environ Int. 2014;73:304–11.

CAS  PubMed  Google Scholar 

U.S. Centers for Disease Control and Prevention. NHANES Fourth national report on human exposure to environmental chemicals. In: Department of Health and Human Services Centers for Disease Control and Prevention Atlanta, Georgia, 2009.

Wambaugh JF, Setzer RW, Reif DM, Gangwal S, Mitchell-Blackwood J, Arnot JA, et al. High-throughput models for exposure-based chemical prioritization in the ExpoCast project. Environ Sci Technol. 2013;47:8479–88.

CAS  PubMed  Google Scholar 

Wambaugh JF, Wang A, Dionisio KL, Frame A, Egeghy P, Judson R, et al. High throughput heuristics for prioritizing human exposure to environmental chemicals. Environ Sci Technol. 2014;48:12760–7.

CAS  PubMed  Google Scholar 

Ring CL, Arnot JA, Bennett DH, Egeghy PP, Fantke P, Huang L, et al. Consensus modeling of median chemical intake for the US population based on predictions of exposure pathways. Environ Sci Technol. 2018;53:719–32.

PubMed  PubMed Central  Google Scholar 

Dionisio KL, Frame AM, Goldsmith M-R, Wambaugh JF, Liddell A, Cathey T, et al. Exploring consumer exposure pathways and patterns of use for chemicals in the environment. Toxicol Rep. 2015;2:228–37.

CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif