Polyphenols from Conyza dioscoridis (L.) ameliorate Alzheimer’s disease- like alterations through multi-targeting activities in two animal models

Knopman DS, Jones DT, Greicius MD. Failure to demonstrate efficacy of aducanumab: an analysis of the EMERGE and ENGAGE trials as reported by Biogen, December 2019”. Alzheimers Dement. 2021;17(4):696–701.

PubMed  Google Scholar 

Singh CSB, Choia KB, Munroa L, Wanga HY, Pfeifera C, Jefferies W. Reversing pathology in a preclinical model of Alzheimer’s disease by hacking cerebrovascular neoangiogenesis with advanced cancer therapeutics. EBioMedicine. 2021. https://doi.org/10.1016/j.ebiom.2021.103503.

Article  PubMed  PubMed Central  Google Scholar 

Ancidoni A, Bacigalupo I, Remoli G, Lacorte E, Piscopo P, Sarti G, Corbo M, Vanacore N, Canevelli M. Anticancer drugs repurposed for Alzheimer’s disease: a systematic review. Alzheimers Res Ther. 2021;13(1):96. https://doi.org/10.1186/s13195-021-00831-6.PMID:33952306;PMCID:PMC8101105.

Article  PubMed  PubMed Central  Google Scholar 

Biessels GJ, Strachan MW, Visseren FL, Kappelle LJ, Whitmer RA. Dementia and cognitive decline in type 2 diabetes and prediabetic stages: towards targeted interventions. Lancet Diabetes Endocrinol. 2014;2:246–55.

PubMed  Google Scholar 

Ng RC, Cheng OY, Jian M, Kwan JS, Ho PW, Cheng KK, et al. Chronic adiponectin deficiency leads to Alzheimer’s disease-like cognitive impairments and pathologies through AMPK inactivation and cerebral insulin resistance in aged mice. Mol Neurodegener. 2016;11:71–80.

PubMed  PubMed Central  Google Scholar 

Kang S, Kim CH, Jung H, Kim E, Song HT, Lee JE. Agmatine ameliorates type 2 diabetes induced-Alzheimer’s disease-like alterations in high-fat-diet-fed mice via reactivation of blunted insulin signalling. Neuropharmacology. 2017;113:467–79.

CAS  PubMed  Google Scholar 

Gomaa AA, Makboul R, Al-Mokhtar M, Abdel-Rahman E, Ahmed I, Nicola M. Terpenoid-rich Elettaria cardamomum extract prevents Alzheimer-like alterations induced in diabetic rats via inhibition of GSK3β activity, oxidative stress and pro-inflammatory cytokines. Cytokine. 2019;113:405–16.

CAS  PubMed  Google Scholar 

Mukherjee A, Soto C. Prion-like protein aggregates and type 2 Diabetes. Cold Spring Harb Perspect Med. 2017;7: a024315.

PubMed  PubMed Central  Google Scholar 

Ma L, Xu GB, Tang X, Zhang C, Zhao W, Wang J, Chen H. Anti-cancer potential of polysaccharide extracted from hawthorn (Crataegus) on human colon cancer cell line HCT116 via cell cycle arrest and apoptosis. J Funct Foods. 2019;64: 103677.

Google Scholar 

Wang X, Chen Y, Fang Z. In-vitro photothermal therapy using plant extract polyphenols functionalized graphene sheets for treatment of lung cancer. J Photochem Photobioi B: Biology. 2019;204:111587–601.

PubMed  Google Scholar 

Ali Abdalla YO, Subramaniam B, Nyamathulla S, Shamsuddin N, Arshad NM, Mun KS, Awang K, Nagoor NH. Natural products for cancer therapy: a review of their mechanism of actions and toxicity in the past decade. J Trop Med. 2022;11(2022):5794350. https://doi.org/10.1155/2022/5794350.

Article  Google Scholar 

Freyssin A, Page G, Fauconneau B, Bilan A. Natural polyphenols effects on protein aggregates in Alzheimer’s and Parkinson’s prion-like diseases. Neural Regen Res. 2018;13:955–61.

CAS  PubMed  PubMed Central  Google Scholar 

Dhouafli Z, Cuanalo-Contreras K, Hayouni E, Mays C, et al. Inhibition of protein misfolding and aggregation by natural phenolic compounds. Cell Mol Life Sci. 2018;75(19):3521–38.

CAS  PubMed  Google Scholar 

Gomaa AA, Makboul R, Al-Mokhtarc M, Nicola M. Polyphenol-rich Boswellia serrata gum prevents cognitive impairment and insulin resistance of diabetic rats through inhibition of GSK3β activity, oxidative stress and pro-inflammatory cytokines. Biomed Pharmacother. 2019;2919(109):281–92.

Google Scholar 

Nassar M, Elshamy A, Gendy A.,2014. Phenolics, essential oil and biological activity of Conyza dioscoridis growing in Egypt. Planta Med. 2014,80 - LP15

Awaad AS, El-meligy RM, Qenawy SA, Atta AH, Soliman GA. Anti-inflammatory, antinociceptive and antipyretic effects of some desert plants. J Saudi Chem Soc. 2011;15:367–73.

Google Scholar 

El Zalabani SM, Hetta MH, Ismail AS. Anti-inflammatory and antimicrobial activity of the different Conyza dioscoridis L. Desf organs Biosafety. 2013;2:1–3.

Google Scholar 

El Zalabani S, Hetta M, Ross S, Abo Youssef A, Zaki M, Ismail A. Antihyperglycemic and antioxidant activities and chemical composition of Conyza dioscoridis (L.) Desf. DC. growing in Egypt. Aust J Basic Applied Sci. 2012;6:257–65.

CAS  Google Scholar 

El shamy A, Gendy A., Farrag A, Nassar M. Antidiabetic and antioxidant activities of phenolic extracts of conyza Dioscoridis L. Int J Pharm Pharm Sci. 2015;7:65–72.

Google Scholar 

Hamed MM, Mohamed MA, Ibrahim MT. Phytochemical investigation and cytotoxic characterization of bioactive constituents from Conyza dioscoridis. Planta Med 2015; 81 - PW_76 DOI: https://doi.org/10.1055/s-0035-1565700

Araujo L, Moujir LM, Rojas J, Rojas L, Carmona J, Rondón M. Chemical composition and biological activity of Conyza bonariensis essential oil collected in Mérida. Venezuela Nat Prod Commun. 2013;8(8):1175–8 (PMID: 24079198).

CAS  PubMed  Google Scholar 

Elgamal A.M., Ahmed R.F., Abd-ElGawad A.M., El Gendy A.E.-N.G., Elshamy A.I., Nassar M.I. Chemical profiles, anticancer, and anti-aging activities of Essential Oils of Pluchea dioscoridis (L.) DC. and Erigeron bonariensis L. Plants. 2021;10:667. https://doi.org/10.3390/plants10040667.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peng L, Hu C, Zhang C, Lu Y, Man S, Ma L. Anti-cancer activity of Conyza blinii saponin against cervical carcinoma through MAPK/TGF-β/Nrf2 signaling pathways. J Ethnopharmacol. 2020;251: 112503. https://doi.org/10.1016/j.jep.2019.112503.

Article  CAS  PubMed  Google Scholar 

Karray A, Alonazi M, Smaoui S, Michaud P, Soliman D, Ben BA. Purification and biochemical characterization of a new protease inhibitor from Conyza dioscoridis with antimicrobial, antifungal and cytotoxic effects. Molecules. 2020;25(22):5452. https://doi.org/10.3390/molecules25225452.PMID:33233753;PMCID:PMC7699837.

Article  CAS  PubMed Central  Google Scholar 

Bonturi CR, Silva Teixeira AB, Rocha VM, et al. Plant Kunitz Inhibitors and Their Interaction with Proteases: Current and Potential Pharmacological Targets. Int J Mol Sci. 2022;23(9):4742. Published 2022 Apr 25. doi:https://doi.org/10.3390/ijms23094742

Ebert U, Kirch W. Scopolamine models of dementia electroencephalogram findings and cognitive performance. Eur J Clin Invest. 1998;28:944–9.

CAS  PubMed  Google Scholar 

Van Dam D, De Deyn PP. Animal models in the drug discovery pipeline for Alzheimer’s disease. Br J Pharmacol. 2011;2011(164):1285–300.

Google Scholar 

Nuzzo D, Picone P, Baldassano S, Caruana L, Messina E, Marino GA, et al. Insulin resistance as common molecular denominator linking obesity to Alzheimer’s disease. Curr Alzheimer Res. 2015;2015(12):723–35.

Google Scholar 

Niu L, Han DW, Xu RL, Han B, Zhou X, Wu HW, et al. A high-sugar high-fat diet-induced metabolic syndrome shows some symptoms of Alzheimer’s disease in rats. J Nutr Health Aging. 2016;2016(20):509–13.

Google Scholar 

Kang S, Lee YH, Lee JE. Metabolism-centric overview of the pathogenesis of Alzheimer’s disease. Yonsei Med J. 2017;58:479–88.

CAS  PubMed  PubMed Central  Google Scholar 

Lee TT, Huang CC, Shieh XH, Chen CL, Chen LJ, Yu B. Flavonoid, phenol and polysaccharide contents of Echinacea purpurea l. and its immunostimulant capacity in vitro. Int J Environ Sci and Develop. 2010;1:5–9.

CAS  Google Scholar 

Chang C, Yang M, Wen H, Chern J. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal. 2002;10:178–82.

CAS  Google Scholar 

Ping KY, Darah I, Yusuf UK, Latha LY, Sasidharan S. Standardization of Euphorbia hirta with Chemical Compounds Identification (GC-MS). Int J Phytomed. 2012;4:12–21.

CAS  Google Scholar 

Nath P, Yadav AK. Acute and sub-acute oral toxicity assessment of the methanolic extract from leaves of Hibiscus rosa-sinensis L. in mice. J Intercult Ethnopharmacol. 2015;4(1):70–3. https://doi.org/10.5455/jice.20141028021746.

Article  CAS  PubMed  Google Scholar 

Ozarowski M, Mikolajczak PL, Bogacz A, Gryszczynska A, Kujawska M, et al. Rosmarinus officinalis L. leaf extract improves memory impairment and affects acetylcholinesterase and butyrylcholinesterase activities in rat brain. Fitoterapia. 2013,;91:261–71.

CAS  PubMed  Google Scholar 

Zhang F, Ye C, Li G, Ding W, Zhou W, Zhu H, et al. The rat model of type 2 diabetic mellitus and its glycometabolism characters. Exp Anim. 2003;52:401–7.

CAS  PubMed  Google Scholar 

Anderson RA, Qin B, Canini F, Poulet L, Roussel AM. Cinnamon counteracts the negative effects of a high fat/high fructose diet on behavior, brain insulin signaling and Alzheimer-associated changes. PLoS ONE. 2013;8: e83243.

PubMed  PubMed Central  Google Scholar 

Xiang X, Wang Z, Zhu Y, Bian L, Yang Y. Dosage of streptozocin in inducing rat model of type 2 diabetes mellitus. Wei Sheng Yan Jiu. 2010;2010(39):138–42.

Google Scholar 

Lin HB, Yang XM, Li TJ, Cheng YF, Zhang HT, Xu JP. Memory deficits and neurochemical changes induced by C-reactive protein in rats: implication in Alzheimer’s disease. Psychopharmacology. 2009;204:705–14.

CAS  PubMed  Google Scholar 

Shin SC, Lee DU. Ameliorating effect of new constituents from the hooks of Uncaria rhynchophylla on scopolamine-induced memory impairment. Chin J Nat Med. 2013;11:391–5.

CAS  PubMed  Google Scholar 

Shankar GM, Leissring MA, Adame A, Sun X, Spooner E, Masliah E, et al. Biochemical and immunohistochemical analysis of an Alzheimer’s disease mouse model reveals the presence of multiple cerebral Abeta assembly forms throughout life. Neurobiol Dis. 2009;36:293–302.

CAS  PubMed  PubMed Central  Google Scholar 

Wang X, Ge A, Cheng M, Guo F, Zhao M, Zhou X, et al. Increased hypothalamic inflammation associated with the susceptibility to obesity in rats exposed to high-fat diet. Exp Diabetes Res. 2012;2012:847246.

PubMed  PubMed Central  Google Scholar 

Gomaa AA, Farghaly HSM, El-Sers DA, Farrag MM, Al-Zokeim NI. Inhibition of adiposity and related metabolic disturbances by polyphenol-rich extract of Boswellia serrata gum through alteration of adipo/cytokine profiles. Inflammopharmacology. 2019;27(3):549–59.

CAS  PubMed  Google Scholar 

Glushakova OY, Glushakov AA, Wijesinghe DS, Valadka AB, Hayes RL, et al. Prospective clinical biomarkers of caspase-mediated apoptosis associated with neuronal and neurovascular damage following stroke and other severe brain injuries: implications for chronic neurodegeneration. Brain Circ. 2017;3:87–108.

PubMed  PubMed Central  Google Scholar 

Plaschke K, Kopitz J. In vitro streptozotocin model for modeling Alzheimer-like changes: effect on amyloid precursor protein secretases and glycogen synthase kinase-3. J Neural Transm (Vienna). 2015;122:551–7.

CAS  Google Scholar 

Barichello T, dos S, I, Savi GD, Simoes LR, Silvestre T, Comim CM

留言 (0)

沒有登入
gif