Endoplasmic reticulum stress targeted therapy for breast cancer

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

PubMed  Google Scholar 

Waks AG, Winer EP. Breast cancer treatment: A review. JAMA. 2019;321:288–300.

CAS  PubMed  Google Scholar 

Fraguas-Sanchez AI, Martin-Sabroso C, Fernandez-Carballido A, Torres-Suarez AI. Current status of nanomedicine in the chemotherapy of breast cancer. Cancer Chemother Pharmacol. 2019;84:689–706.

CAS  PubMed  Google Scholar 

Basu A, Ramamoorthi G, Jia Y, Faughn J, Wiener D, Awshah S, Kodumudi K, Czerniecki BJ. Immunotherapy in breast cancer: current status and future directions. Adv Cancer Res. 2019;143:295–349.

PubMed  Google Scholar 

Richman J, Dowsett M. Beyond 5 years: Enduring risk of recurrence in oestrogen receptor-positive breast cancer. Nat Rev Clin Oncol. 2019;16:296–311.

CAS  PubMed  Google Scholar 

Eckerling A, Ricon-Becker I, Sorski L, Sandbank E, Ben-Eliyahu S. Stress and cancer: mechanisms, significance and future directions. Nat Rev Cancer. 2021;21:767–85.

CAS  PubMed  Google Scholar 

Chen X, Cubillos-Ruiz JR. Endoplasmic reticulum stress signals in the tumour and its microenvironment. Nat Rev Cancer. 2021;21:71–88.

CAS  PubMed  Google Scholar 

Schonthal AH. Endoplasmic reticulum stress: Its role in disease and novel prospects for therapy. Scientifica (Cairo). 2012;2012: 857516.

Google Scholar 

Khanna M, Agrawal N, Chandra R, Dhawan G. Targeting unfolded protein response: a new horizon for disease control. Expert Rev Mol Med. 2021;23: e1.

CAS  PubMed  Google Scholar 

Madden E, Logue SE, Healy SJ, Manie S, Samali A. The role of the unfolded protein response in cancer progression: From oncogenesis to chemoresistance. Biol Cell. 2019;111:1–17.

PubMed  Google Scholar 

Wu J, Kaufman RJ. From acute er stress to physiological roles of the unfolded protein response. Cell Death Differ. 2006;13:374–84.

CAS  PubMed  Google Scholar 

Salvagno C, Mandula JK, Rodriguez PC, Cubillos-Ruiz JR. Decoding endoplasmic reticulum stress signals in cancer cells and antitumor immunity. Trends Cancer 2022.

Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K. Xbp1 mrna is induced by atf6 and spliced by ire1 in response to er stress to produce a highly active transcription factor. Cell. 2001;107:881–91.

CAS  PubMed  Google Scholar 

Hetz C, Zhang K, Kaufman RJ. Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Biol. 2020;21:421–38.

CAS  PubMed  PubMed Central  Google Scholar 

da Silva DC, Valentao P, Andrade PB, Pereira DM. Endoplasmic reticulum stress signaling in cancer and neurodegenerative disorders: tools and strategies to understand its complexity. Pharmacol Res. 2020;155: 104702.

PubMed  Google Scholar 

Fan P, Cunliffe HE, Maximov PY, Agboke FA, McDaniel RE, Zou X, Ramos P, Russell ML, Jordan VC. Integration of downstream signals of insulin-like growth factor-1 receptor by endoplasmic reticulum stress for estrogen-induced growth or apoptosis in breast cancer cells. Mol Cancer Res. 2015;13:1367–76.

CAS  PubMed  PubMed Central  Google Scholar 

Bianchini G, De Angelis C, Licata L, Gianni L. Treatment landscape of triple-negative breast cancer - expanded options, evolving needs. Nat Rev Clin Oncol. 2021;19:91.

PubMed  Google Scholar 

Bianchini G, Balko JM, Mayer IA, Sanders ME, Gianni L. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol. 2016;13:674–90.

CAS  PubMed  PubMed Central  Google Scholar 

Li C, Fan Q, Quan H, Nie M, Luo Y, Wang L. The three branches of the unfolded protein response exhibit differential significance in breast cancer growth and stemness. Exp Cell Res. 2018;367:170–85.

CAS  PubMed  Google Scholar 

Burstein HJ. Systemic therapy for estrogen receptor-positive, her2-negative breast cancer. N Engl J Med. 2020;383:2557–70.

CAS  PubMed  Google Scholar 

Gomez BP, Riggins RB, Shajahan AN, Klimach U, Wang A, Crawford AC, Zhu Y, Zwart A, Wang M, Clarke R. Human x-box binding protein-1 confers both estrogen independence and antiestrogen resistance in breast cancer cell lines. FASEB J. 2007;21:4013–27.

CAS  PubMed  Google Scholar 

Lewis JS, Meeke K, Osipo C, Ross EA, Kidawi N, Li T, Bell E, Chandel NS, Jordan VC. Intrinsic mechanism of estradiol-induced apoptosis in breast cancer cells resistant to estrogen deprivation. J Natl Cancer Inst. 2005;97:1746–59.

CAS  PubMed  Google Scholar 

Ding L, Yan J, Zhu J, Zhong H, Lu Q, Wang Z, Huang C, Ye Q. Ligand-independent activation of estrogen receptor alpha by xbp-1. Nucleic Acids Res. 2003;31:5266–74.

CAS  PubMed  PubMed Central  Google Scholar 

Andruska N, Zheng X, Yang X, Helferich WG, Shapiro DJ. Anticipatory estrogen activation of the unfolded protein response is linked to cell proliferation and poor survival in estrogen receptor alpha-positive breast cancer. Oncogene. 2015;34:3760–9.

CAS  PubMed  Google Scholar 

Cancer Genome Atlas N. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70.

Google Scholar 

Scriven P, Coulson S, Haines R, Balasubramanian S, Cross S, Wyld L. Activation and clinical significance of the unfolded protein response in breast cancer. Br J Cancer. 2009;101:1692–8.

CAS  PubMed  PubMed Central  Google Scholar 

Hu R, Warri A, Jin L, Zwart A, Riggins RB, Fang HB, Clarke R. Nf-kappab signaling is required for xbp1 (unspliced and spliced)-mediated effects on antiestrogen responsiveness and cell fate decisions in breast cancer. Mol Cell Biol. 2015;35:379–90.

PubMed  Google Scholar 

Barua D, Gupta A, Gupta S. Targeting the ire1-xbp1 axis to overcome endocrine resistance in breast cancer: Opportunities and challenges. Cancer Lett. 2020;486:29–37.

CAS  PubMed  Google Scholar 

Fan P, Jordan VC. Estrogen receptor and the unfolded protein response: double-edged swords in therapy for estrogen receptor-positive breast cancer. Target Oncol. 2022;17:111–24.

PubMed  Google Scholar 

Fan P, Jordan VC. How perk kinase conveys stress signals to nuclear factor-kappab to mediate estrogen-induced apoptosis in breast cancer cells? Cell Death Dis. 2018;9:842.

PubMed  PubMed Central  Google Scholar 

Kiang JG, Gist ID, Tsokos GC. 17 beta-estradiol-induced increases in glucose-regulated protein 78kd and 94kd protect human breast cancer t47-d cells from thermal injury. Chin J Physiol. 1997;40:213–9.

CAS  PubMed  Google Scholar 

Arora S, Golemis EA. A new strategy to eradicate her2-positive breast tumors? Sci Signal. 2015;8:fs11.

PubMed  PubMed Central  Google Scholar 

Martin-Perez R, Palacios C, Yerbes R, Cano-Gonzalez A, Iglesias-Serret D, Gil J, Reginato MJ, Lopez-Rivas A. Activated erbb2/her2 licenses sensitivity to apoptosis upon endoplasmic reticulum stress through a perk-dependent pathway. Cancer Res. 2014;74:1766–77.

CAS  PubMed  PubMed Central  Google Scholar 

Zeng P, Sun S, Li R, Xiao ZX, Chen H. Her2 upregulates atf4 to promote cell migration via activation of zeb1 and downregulation of e-cadherin. Int J Mol Sci. 2019;20.

Singh N, Joshi R, Komurov K. Her2-mtor signaling-driven breast cancer cells require er-associated degradation to survive. Sci Signal. 2015;8:ra52.

PubMed  Google Scholar 

Prokakis E, Dyas A, Grun R, Fritzsche S, Bedi U, Kazerouni ZB, Kosinsky RL, Johnsen SA, Wegwitz F. Usp22 promotes her2-driven mammary carcinoma aggressiveness by suppressing the unfolded protein response. Oncogene. 2021;40:4004–18.

CAS  PubMed  PubMed Central  Google Scholar 

Kumandan S, Mahadevan NR, Chiu K, DeLaney A, Zanetti M. Activation of the unfolded protein response bypasses trastuzumab-mediated inhibition of the pi-3k pathway. Cancer Lett. 2013;329:236–42.

CAS  PubMed  Google Scholar 

Waks AG, Winer EP. Breast cancer treatment. JAMA. 2019;321:316.

PubMed  Google Scholar 

O’Reilly EA, Gubbins L, Sharma S, Tully R, Guang MH, Weiner-Gorzel K, McCaffrey J, Harrison M, Furlong F, Kell M, et al. The fate of chemoresistance in triple negative breast cancer (tnbc). BBA Clin. 2015;3:257–75.

PubMed  PubMed Central  Google Scholar 

Chen X, Iliopoulos D, Zhang Q, Tang Q, Greenblatt MB, Hatziapostolou M, Lim E, Tam WL, Ni M, Chen Y, et al. Xbp1 promotes triple-negative breast cancer by controlling the hif1alpha pathway. Nature. 2014;508:103–7.

CAS  PubMed  PubMed Central  Google Scholar 

Harnoss JM, Le Thomas A, Reichelt M, Guttman O, Wu TD, Marsters SA, Shemorry A, Lawrence DA, Kan D, Segal E, et al. Ire1alpha disruption in triple-negative breast cancer cooperates with antiangiogenic therapy by reversing er stress adaptation and remodeling the tumor microenvironment. Cancer Res. 2020;80:2368–79.

CAS  PubMed  PubMed Central  Google Scholar 

Zhao N, Cao J, Xu L, Tang Q, Dobrolecki LE, Lv X, Talukdar M, Lu Y, Wang X, Hu DZ, et al. Pharmacological targeting of myc-regulated ire1/xbp1 pathway suppresses myc-driven breast cancer. J Clin Invest. 2018;128:1283–99.

PubMed  PubMed Central  Google Scholar 

Cano-Gonzalez A, Mauro-Lizcano M, Iglesias-Serret D, Gil J, Lopez-Rivas A. Involvement of both caspase-8 and noxa-activated pathways in endoplasmic reticulum stress-induced apoptosis in triple-negative breast tumor cells. Cell Death Dis. 2018;9:134.

PubMed  PubMed Central  Google Scholar 

Li X, Zhou D, Cai Y, Yu X, Zheng X, Chen B, Li W, Zeng H, Hassan M, Zhao Y, et al. Endoplasmic reticulum stress inhibits ar expression via the perk/eif2alpha/atf4 pathway in luminal androgen receptor triple-negative breast cancer and prostate cancer. NPJ Breast Cancer. 2022;8:2.

CAS  PubMed  PubMed Central  Google Scholar 

Lee S, Lee E, Ko E, Ham M, Lee HM, Kim ES, Koh M, Lim HK, Jung J, Park SY, et al. Tumor-associated macrophages secrete ccl2 and induce the invasive phenotype of human breast epithelial cells through upregulation of ero1-alpha and mmp-9. Cancer Lett. 2018;437:2

留言 (0)

沒有登入
gif