Proteomic analysis identifies a signature of disease severity in the plasma of COVID-19 pneumonia patients associated to neutrophil, platelet and complement activation

Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021;19(141):54.

Google Scholar 

Attaway AH, Scheraga RG, Bhimraj A, Biehl M, Hatipoğ LuU. Severe covid-19 pneumonia: pathogenesis and clinical management. BMJ. 2021. https://doi.org/10.1136/bmj.n436.

Article  PubMed  Google Scholar 

Gupta A, Madhavan MV, Sehgal K, Nair N, Mahajan S, Sehrawat TS, et al. Extrapulmonary manifestations of COVID-19. Nat Med. 2020. https://doi.org/10.1038/s41591-020-0968-3.

Article  PubMed  PubMed Central  Google Scholar 

Williamson EJ, Walker AJ, Bhaskaran K, Bacon S, Bates C, Morton CE, et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature. 2020;584:430–6.

CAS  PubMed  PubMed Central  Google Scholar 

Dessie ZG, Zewotir T. Mortality-related risk factors of COVID-19: a systematic review and meta-analysis of 42 studies and 423,117 patients. BMC Infect Dis. 2021. https://doi.org/10.1186/s12879-021-06536-3.

Article  PubMed  PubMed Central  Google Scholar 

Nishiga M, Wang DW, Han Y, Lewis DB, Wu JC. COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives. Nat Rev Cardiol. 2020;17:543–58.

CAS  PubMed  PubMed Central  Google Scholar 

Stefan N, Birkenfeld AL, Schulze MB. Global pandemics interconnected - obesityimpaired metabolic health and COVID-19. Nat Rev Endocrinol. 2021;17:135–49.

CAS  PubMed  Google Scholar 

Belsky JA, Tullius BP, Lamb MG, Sayegh R, Stanek JR, Auletta JJ. COVID-19 in immunocompromised patients: a systematic review of cancerhematopoietic cell and solid organ transplant patients. J Infect. 2021;82:329–38. https://doi.org/10.1016/j.jinf.2021.01.022.

Article  CAS  PubMed  PubMed Central  Google Scholar 

V’kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol. 2021;19:155–70.

PubMed  Google Scholar 

Ayres JS. A metabolic handbook for the COVID-19 pandemic. Nat Metab. 2020;2:572–85.

CAS  PubMed  PubMed Central  Google Scholar 

Flerlage T, Boyd DF, Meliopoulos V, Thomas PG, Schultz-Cherry S. Influenza virus and SARS-CoV-2: pathogenesis and host responses in the respiratory tract. Nat Rev. 2021;19:425–41.

CAS  Google Scholar 

Shen B, Yi X, Sun Y, Bi X, Du J, Zhang C, et al. Proteomic and Metabolomic Characterization of COVID-19 Patient Sera. Cell. 2020;182:59-72.e15.

CAS  PubMed  PubMed Central  Google Scholar 

Messner CB, Demichev V, Wendisch D, Michalick L, White M, Freiwald A, et al. Ultra-high-throughput clinical proteomics reveals classifiers of COVID-19 infection. Cell Syst. 2020;11:11-24.e4.

CAS  PubMed  PubMed Central  Google Scholar 

Shu T, Ning W, Wu D, Xu J, Han Q, Huang M, et al. Plasma Proteomics identify biomarkers and pathogenesis of COVID-19. Immunity. 2020;53:1108-1122.e5.

CAS  PubMed  PubMed Central  Google Scholar 

Su Y, Chen D, Yuan D, Lausted C, Choi J, Dai CL, et al. Multi-omics resolves a sharp disease-state shift between mild and moderate COVID-19. Cell. 2020;183:1479-1495.e20.

CAS  PubMed  PubMed Central  Google Scholar 

Overmyer KA, Shishkova E, Miller IJ, Balnis J, Bernstein MN, Peters-Clarke TM, et al. Large-scale multi-omic analysis of COVID-19 severity. Cell Syst. 2021;12:23-40.e7.

CAS  PubMed  Google Scholar 

Schimke LF, Marques AHC, Baiocchi GC, de Souza Prado CA, Fonseca DLM, Freire PP, et al. Severe COVID-19 shares a common neutrophil activation signature with other acute inflammatory states. Cells. 2022;11:847.

CAS  PubMed  PubMed Central  Google Scholar 

Vora SM, Lieberman J, Wu H. Inflammasome activation at the crux of severe COVID-19. Nat Rev Immunol. 2021;21:694–703.

PubMed  PubMed Central  Google Scholar 

Chen Z, Wherry EJ. T cell responses in patients with COVID-19. Nat Rev. 2020;20:529–36.

CAS  Google Scholar 

Song JW, Zhang C, Fan X, Meng FP, Xu Z, Xia P, et al. Immunological and inflammatory profiles in mild and severe cases of COVID-19. Nat Commun. 2020;11:3410.

CAS  PubMed  PubMed Central  Google Scholar 

De Biasi S, Meschiari M, Gibellini L, Bellinazzi C, Borella R, Fidanza L, et al. Marked T cell activationsenescenceexhaustion and skewing towards TH17 in patients with COVID-19 pneumonia. Nat Commun. 2020;11:3434.

PubMed  PubMed Central  Google Scholar 

Rydyznski MC, Ramirez SI, Dan JM, Grifoni A, Hastie KM, Weiskopf D, et al. Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity. Cell. 2020;183:996-1012.e19.

Google Scholar 

Berlin DA, Gulick RM, Martinez FJ. Severe Covid-19. N Engl J Med. 2020;383:2451–60.

CAS  PubMed  Google Scholar 

Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, et al. Pulmonary Vascular EndothelialitisThrombosisand Angiogenesis in Covid-19 HHS Public Access. N Engl J Med. 2020;383:120–8.

CAS  PubMed  PubMed Central  Google Scholar 

Chandramouli K, Qian P-Y. Proteomics: challengestechniques and possibilities to overcome biological sample complexity. Hum Genom Proteom. 2009. https://doi.org/10.4061/2009/239204.

Article  Google Scholar 

Ciccosanti F, Di Rienzo M, Romagnoli A, Colavita F, Refolo G, Castilletti C, et al. Proteomic analysis identifies the RNA helicase DDX3X as a host target against SARS-CoV-2 infection. Antiviral Res. 2021;190:105064.

CAS  PubMed  PubMed Central  Google Scholar 

Tyanova S, Temu T, Carlson A, Sinitcyn P, Mann M, Cox J. Visualization of LC-MS/MS proteomics data in MaxQuant. Proteomics. 2015;15:1453–6.

CAS  PubMed  PubMed Central  Google Scholar 

Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, et al. The perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods. 2016;13:731–40.

CAS  PubMed  Google Scholar 

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.

CAS  PubMed  PubMed Central  Google Scholar 

Lee KJ, Carlin JB. Multiple imputation for missing data: fully conditional specification versus multivariate normal imputation. Am J Epidemiol. 2010;171:624–32.

PubMed  Google Scholar 

Carbon S, Douglass E, Dunn N, Good B, Harris NL, Lewis SE, et al. The gene ontology resource: 20 years and still going strong. Nucleic Acids Res. 2019;47:D330-8.

CAS  Google Scholar 

Martin TR, Wurfel MM, Zanoni I, Ulevitch R. Targeting innate immunity by blocking CD14: Novel approach to control inflammation and organ dysfunction in COVID-19 illness. EBioMedicine. 2020;57:102836.

PubMed  PubMed Central  Google Scholar 

Anas A, van der Poll T, Vos AF. Role of CD14 in lung inflammation and infection. Crit Care. 2010;14:209.

PubMed  PubMed Central  Google Scholar 

DeRoo EP, Wrobleski SK, Shea EM, Al-Khalil RK, Hawley AE, Henke PK, et al. The role of galectin-3 and galectin-3-binding protein in venous thrombosis. Blood. 2015;125:1813–21.

CAS  PubMed  PubMed Central  Google Scholar 

Malaquias MAS, Gadotti AC, da Motta-Junior JS, Martins APC, Azevedo MLV, Benevides APK, et al. The role of the lectin pathway of the complement system in SARS-CoV-2 lung injury. Transl Res. 2021;231:55–63.

CAS  PubMed  Google Scholar 

Das N, Schmidt TA, Krawetz RJ, Dufour A. Proteoglycan 4: from mere lubricant to regulator of tissue homeostasis and inflammation: does proteoglycan 4 have the ability to buffer the inflammatory response? Bioessays. 2019. https://doi.org/10.1002/bies.201800166.

Article  PubMed  Google Scholar 

Ahlfeld SK, Wang J, Gao Y, Snider P, Conway SJ. Initial suppression of transforming growth factor-β signaling and loss of TGFBI causes early alveolar structural defects resulting in bronchopulmonary dysplasia. Am J Pathol. 2016;186:777–93.

CAS  PubMed  PubMed Central  Google Scholar 

Anderson DH, Radeke MJ, Gallo NB, Chapin EA, Johnson PT, Curletti CR, et al. The pivotal role of the complement system in aging and age-related macular degeneration: hypothesis re-visited. Prog Retin Eye Res. 2010;29:95–112.

CAS  PubMed  Google Scholar 

Kreus M, Lehtonen S, Skarp S, Kaarteenaho R. Extracellular matrix proteins produced by stromal cells in idiopathic pulmonary fibrosis and lung adenocarcinoma. PLoS One. 2021. https://doi.org/10.1371/journal.pone.0250109.

Article  PubMed  PubMed Central  Google Scholar 

Niu L, Geyer PE, Wewer ANJ, Gluud LL, Santos A, Doll S, et al. Plasma proteome profiling discovers novel proteins associated with non-alcoholic fatty liver disease. Mol Syst. 2019. https://doi.org/10.15252/msb.20188793.

Article  Google Scholar 

Schwanekamp JA, Lorts A, Sargent MA, York AJ, Grimes KM, Fischesser DM, et al. TGFBI functions similar to periostin but is uniquely dispensable during cardiac injury. PLoS One. 2017. https://doi.org/10.1371/journal.pone.0181945.

Article  PubMed  PubMed Central  Google Scholar 

Xu F, Tanabe N, Vasilescu DM, McDonough JE, Coxson HC, Ikezoe K, et al. The transition from normal lung anatomy to minimal and established fibrosis in idiopathic pulmonary fibrosis (IPF). EbioMedicine. 2021.

留言 (0)

沒有登入
gif