Molecular engineering of contact interfaces for high-performance perovskite solar cells

Zhang, F. & Zhu, K. Additive engineering for efficient and stable perovskite solar cells. Adv. Energy Mater. 10, 1902579 (2020).

Article  CAS  Google Scholar 

Ball, J. M. & Petrozza, A. Defects in perovskite-halides and their effects in solar cells. Nat. Energy 1, 16149 (2016).

Article  CAS  Google Scholar 

Wang, F., Bai, S., Tress, W., Hagfeldt, A. & Gao, F. Defects engineering for high-performance perovskite solar cells. npj Flex. Electron. 2, 22 (2018).

Article  Google Scholar 

Lin, L. et al. Inorganic electron transport materials in perovskite solar cells. Adv. Funct. Mater. 31, 2008300 (2021).

Article  CAS  Google Scholar 

Shluger, A. in Handbook of Materials Modeling (eds Andreoni, W. & Yip, S.) https://doi.org/10.1007/978-3-319-50257-1_79-1 (Springer, 2019).

Allen, T. G., Bullock, J., Yang, X., Javey, A. & De Wolf, S. Passivating contacts for crystalline silicon solar cells. Nat. Energy 4, 914–928 (2019).

Article  CAS  Google Scholar 

Shin, S. S., Lee, S. J. & Seok, S. I. Metal oxide charge transport layers for efficient and stable perovskite solar cells. Adv. Funct. Mater. 29, 1900455 (2019). This work provides an up-to-date overview of the development of state-of-the-art metal-oxide charge-transport layers for the fabrication of efficient and stable perovskite solar cells (PSCs).

Article  CAS  Google Scholar 

Chen, Q., Wang, C., Li, Y. & Chen, L. Interfacial dipole in organic and perovskite solar cells. J. Am. Chem. Soc. 142, 18281–18292 (2020). This work focuses on the dipole moment of different interlayers and its impact on the performance of perovskite and organic solar cells.

Article  CAS  Google Scholar 

Yang, Y. et al. Eliminating charge accumulation via interfacial dipole for efficient and stable perovskite solar cells. ACS Appl. Mater. Interfaces 11, 34964–34972 (2019).

Article  CAS  Google Scholar 

Roose, B., Wang, Q. & Abate, A. The role of charge selective contacts in perovskite solar cell stability. Adv. Energy Mater. 9, 1803140 (2019). This study analyses materials and interface engineering of charge-selective contacts to enhance the device stability of PSCs.

Google Scholar 

Mundt, L. E. et al. Surface-activated corrosion in tin–lead halide perovskite solar cells. ACS Energy Lett. 5, 3344–3351 (2020).

Article  CAS  Google Scholar 

Schutt, K. et al. Overcoming zinc oxide interface instability with a methylammonium-free perovskite for high-performance solar cells. Adv. Funct. Mater. 29, 1900466 (2019).

Article  CAS  Google Scholar 

Boyd, C. C. et al. Overcoming redox reactions at perovskite-nickel oxide interfaces to boost voltages in perovskite solar cells. Joule 4, 1759–1775 (2020). This study provides insights into redox reactions occurring at metal-oxide/perovskite interfaces, particularly at the NiOx/perovskite interface, and strategies to alleviate such unwanted reactions.

Article  CAS  Google Scholar 

Dai, Z. et al. Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability. Science 372, 618–622 (2021). This work shows that the insertion of an iodine-terminated self-assembled monolayer (SAM) at the SnO2/perovskite interface increases the adhesion toughness between the electron-transport layer (ETL) and perovskite layer by 50%.

Article  CAS  Google Scholar 

Zhao, J. et al. Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. Sci. Adv. 3, eaao5616 (2017). This study reveals that the thermal expansion mismatch between the perovskite and substrate materials is an important intrinsic source of instability in perovskite films, accelerating the decomposition of PSCs.

Article  Google Scholar 

Jiao, Y. et al. Strain engineering of metal halide perovskites on coupling anisotropic behaviors. Adv. Funct. Mater. 31, 2006243 (2021).

Article  CAS  Google Scholar 

Muñoz-García, A. B. et al. Dye-sensitized solar cells strike back. Chem. Soc. Rev. 50, 12450–12550 (2021). This review summarizes the advances in the field of dye-sensitized solar cells (DSSCs), including dye sensitizers, over the past decade, encompassing all aspects of the technology.

Article  Google Scholar 

Polo, A. S., Itokazu, M. K. & Murakami Iha, N. Y. Metal complex sensitizers in dye-sensitized solar cells. Coord. Chem. Rev. 248, 1343–1361 (2004).

Article  CAS  Google Scholar 

Mishra, A., Fischer, M. K. R. & Bäuerle, P. Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules. Angew. Chem. Int. Ed. 48, 2474–2499 (2009).

Article  CAS  Google Scholar 

Ayele, D. W. et al. in Advances in Organometallic Chemistry and Catalysis 501–511 (Wiley, 2013).

Massin, J. et al. Design and synthesis of novel organometallic dyes for NiO sensitization and photo-electrochemical applications. Dalton Trans. 45, 12539–12547 (2016).

Article  CAS  Google Scholar 

Zhumagali, S. et al. Linked nickel oxide/perovskite interface passivation for high-performance textured monolithic tandem solar cells. Adv. Energy Mater. 11, 2101662 (2021). This work provides an insight into the interface modification of the NiOxhole-transport layer (HTL)/perovskite interface by self-assembled N719 dye, and its impact on the fabrication of highly efficient and stable single-junction and multi-junction PSCs.

Article  CAS  Google Scholar 

Kohle, O., Grätzel, M., Meyer, A. F. & Meyer, T. B. The photovoltaic stability of bis(isothiocyanato)ruthenium(ii)-bis-2,2′bipyridine-4,4′-dicarboxylic acid and related sensitizers. Adv. Mater. 9, 904–906 (1997).

Article  CAS  Google Scholar 

Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

Article  CAS  Google Scholar 

Anderson, S. et al. Chemical modification of a titanium (iv) oxide electrode to give stable dye sensitisation without a supersensitiser. Nature 280, 571–573 (1979).

Article  CAS  Google Scholar 

Tsubomura, H., Matsumura, M., Nomura, Y. & Amamiya, T. Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell. Nature 261, 402–403 (1976).

Article  CAS  Google Scholar 

O’Regan, B. & Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991).

Article  Google Scholar 

Harikisun, R. & Desilvestro, H. Long-term stability of dye solar cells. Sol. Energy 85, 1179–1188 (2011).

Article  CAS  Google Scholar 

Miettunen, K. et al. Insights into corrosion in dye solar cells. Prog. Photovolt. Res. Appl. 23, 1045–1056 (2015).

Article  CAS  Google Scholar 

Bach, U. et al. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395, 583–585 (1998).

Article  CAS  Google Scholar 

Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

Article  CAS  Google Scholar 

Kim, H.-S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).

Article  Google Scholar 

Jeng, J.-Y. et al. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 25, 3727–3732 (2013).

Article  CAS  Google Scholar 

Liu, M., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013).

Article  CAS  Google Scholar 

Kim, H., Lim, K.-G. & Lee, T.-W. Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers. Energy Environ. Sci. 9, 12–30 (2016).

Article  CAS  Google Scholar 

Stranks, S. D. et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

Article  CAS  Google Scholar 

Ali, F., Roldán-Carmona, C., Sohail, M. & Nazeeruddin, M. K. Applications of self-assembled monolayers for perovskite solar cells interface engineering to address efficiency and stability. Adv. Energy Mater. 10, 2002989 (2020). This work describes the importance of SAMs for the improvement of PSC performance through energy band alignment, reduced interfacial charge recombination and trap passivation.

Article  CAS  Google Scholar 

Zhang, L. & Cole, J. M. Anchoring groups for dye-sensitized solar cells. ACS Appl. Mater. Interfaces 7, 3427–3455 (2015).

Article  CAS  Google Scholar 

Carella, A., Borbone, F. & Centore, R. Research progress on photosensitizers for DSSC. Front. Chem. 6, 481 (2018).

Article  CAS  Google Scholar 

Nalzala Thomas, M. R., Kanniyambatti Lourdusamy, V. J., Dhandayuthapani, A. A. & Jayakumar, V. Non-metallic organic dyes as photosensitizers for dye-sensitized solar cells: a review. Environ. Sci. Pollut. Res. 28, 28911–28925 (2021).

Article  CAS  Google Scholar 

Kim, S. Y., Cho, S. J., Byeon, S. E., He, X. & Yoon, H. J. Self-assembled monolayers as interface engineering nanomaterials in perovskite solar cells. Adv. Energy Mater. 10, 2002606 (2020).

Article  CAS  Google Scholar 

Zuo, C. et al. Advances in perovskite solar cells. Adv. Sci. 3, 1500324 (2016).

Article  Google Scholar 

Lee, K. E., Gomez, M. A., Elouatik, S. & Demopoulos, G. P. Further understanding of the adsorption mechanism of N719 sensitizer on anatase TiO2 films for DSSC applications using vibrational spectroscopy and confocal Raman imaging. Langmuir 26, 9575–9583 (2010).

Article  CAS  Google Scholar 

Ouyang, D., Huang, Z. & Choy, W. C. H. Solution-processed metal oxide nanocrystals as carrier transport layers in organic and perovskite solar cells. Adv. Funct. Mater. 29, 1804660 (2019).

Article  Google Scholar 

Wang, K. et al. Novel inorganic electron transport layers for planar perovskite solar cells: progress and prospective. Nano Energy 68, 104289 (2020).

Article  CAS  Google Scholar 

Cao, Z. et al. Metal oxide alternatives for efficient electron transport in perovskite solar cells: beyond TiO2 and SnO2. J. Mater. Chem. A 8, 19768–19787 (2020).

Article  CAS  Google Scholar 

Dong, Q., Ho, C. H. Y., Yu, H., Salehi, A. & So, F. Defect passivation by fullerene derivative in perovskite solar cells with aluminum-doped zinc oxide as electron transporting layer. Chem. Mater. 31, 6833–6840 (2019).

Article  CAS 

留言 (0)

沒有登入
gif