Suitability of lectin binding studies for the characterization of redox-active microbial environmental biofilms

Babauta JT, Nguyen HD, Harrington TD, Renslow R, Beyenal H (2012) pH, redox potential and local biofilm potential microenvironments within Geobacter sulfurreducens biofilms and their roles in electron transfer. Biotechnol Bioeng 109(10):2651–2662. https://doi.org/10.1002/bit.24538

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bjerg JT, Boschker HTS, Larsen S, Berry D, Schmid M, Millo D, Tataru P, Meysman FJR, Wagner M, Nielsen LP, Schramm A (2018) Long-distance electron transport in individual, living cable bacteria. Proc Natl Acad Sci USA 115(22):5786–5791. https://doi.org/10.1073/pnas.1800367115

Article  CAS  PubMed  PubMed Central  Google Scholar 

Czerwińska-Główka D, Krukiewicz K (2020) A journey in the complex interactions between electrochemistry and bacteriology: From electroactivity to electromodulation of bacterial biofilms. Bioelectrochemistry 131:107401. https://doi.org/10.1016/j.bioelechem.2019.107401

Article  CAS  PubMed  Google Scholar 

de Beer D, Stoodley P, Roe F, Lewandowski Z (1994) Effects of biofilm structures on oxygen distribution and mass transport. Biotechnol Bioeng 43(11):1131–1138.https://doi.org/10.1002/bit.260431118

Article  CAS  PubMed  Google Scholar 

Fan S, Webb JEA, Yang Y, Nieves DJ, Gonçales VR, Tran J, Hilzenrat G, Kahram M, Tilley RD, Gaus K, Gooding JJ (2019) Observing the reversible single molecule electrochemistry of Alexa Fluor 647 dyes by total internal reflection fluorescence microscopy. Angew Chem Int Ed 58:14495–14498. https://doi.org/10.1002/anie.201907298

Article  CAS  Google Scholar 

Flemming H-C (2011) The perfect slime. Colloids Surf B 86(2):251–259

Article  CAS  Google Scholar 

Gieseke A, Tarre S, Green M, de Beer D (2006) Nitrification in a biofilm at low pH values: role of in situ microenvironments and acid tolerance. Appl Environ Microbiol 72(6):4283–4292. https://doi.org/10.1128/aem.00241-06

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goldstein IJ, Reichert CM, Misaki A (1974) Interaction of concanavalin A with model substrates. Ann N Y Acad Sci 234(1):283–296. https://doi.org/10.1111/j.1749-6632.1974.tb53040.x

Article  CAS  PubMed  Google Scholar 

Hao LK, Li JL, Kappler A, Obst M (2013) Mapping of heavy metal ion sorption to cell-extracellular polymeric substance-mineral aggregates by using metal-selective fluorescent probes and confocal laser scanning microscopy. Appl Environ Microbiol 79(21):6524–6534. https://doi.org/10.1128/Aem.02454-13

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hao LK, Guo Y, Byrne JM, Zeitvogel F, Schmid G, Ingino P, Li JL, Neu TR, Swanner ED, Kappler A, Obst M (2016) Binding of heavy metal ions in aggregates of microbial cells, EPS and biogenic iron minerals measured in-situ using metal- and glycoconjugates-specific fluorophores. Geochim Cosmochim Acta 180:66–96. https://doi.org/10.1016/j.gca.2016.02.016

Article  CAS  Google Scholar 

Hassing GS, Goldstein IJ (1970) Ultraviolet difference spectral studies on concanavalin A. Eur J Biochem 16(3):549–556. https://doi.org/10.1111/j.1432-1033.1970.tb01116.x

Article  CAS  PubMed  Google Scholar 

Hedrich S, Johnson DB (2014) Remediation and selective recovery of metals from acidic mine waters using novel modular bioreactors. Environ Sci Technol 48(20):12206–12212. https://doi.org/10.1021/es5030367

Article  CAS  PubMed  Google Scholar 

Hegler F, Schmidt C, Schwarz H, Kappler A (2010) Does a low-pH microenvironment around phototrophic FeII-oxidizing bacteria prevent cell encrustation by FeIII minerals? Fems Microbiol Ecol 74(3):592–600. https://doi.org/10.1111/j.1574-6941.2010.00975.x

Article  CAS  PubMed  Google Scholar 

Hernandez ME, Newman DK (2001) Extracellular electron transfer. Cell Mol Life Sci 58(11):1562–1571. https://doi.org/10.1007/PL00000796

Article  CAS  PubMed  Google Scholar 

Hunter RC, Beveridge TJ (2005) Application of a pH-sensitive fluoroprobe (C-SNARF-4) for pH microenvironment analysis in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 71(5):2501–2510. https://doi.org/10.1128/aem.71.5.2501-2510.2005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Janneck E, Arnold I, Koch T, Meyer J, Burghardt D, Ehinger S (2010) Microbial synthesis of schwertmannite from lignite mine water and its utilization for removal of arsenic from mine waters and for production of iron pigments. In: Wolkersdorfer C, Freund A (ed) Mine water and innovative thinking: Proceedings of the International Mine Water Association Symposium, Cape Breton University Press, Sydney, 2010. p 131–35

Kappler A, Bryce C, Mansor M, Lueder U, Byrne JM, Swanner ED (2021) An evolving view on biogeochemical cycling of iron. Nat Rev Microbiol. https://doi.org/10.1038/s41579-020-00502-7

Article  PubMed  Google Scholar 

Kumar M, Kumar N, Bhalla V (2011) FRET-induced nanomolar detection of Fe2+ based on cinnamaldehyde-rhodamine derivative. Tetrahedron Lett 52(33):4333–4336. https://doi.org/10.1016/j.tetlet.2011.06.044

Article  CAS  Google Scholar 

Kumar R, Singh L, Zularisam AW, Hai FI (2018) Microbial fuel cell is emerging as a versatile technology: a review on its possible applications, challenges and strategies to improve the performances. Int J Energy Res 42(2):369–394. https://doi.org/10.1002/er.3780

Article  Google Scholar 

Lanz E, Gregor M, Slavík J, Kotyk A (1997) Use of FITC as a fluorescent probe for intracellular pH measurement. J Fluoresc 7(4):317–319. https://doi.org/10.1023/A:1022586127784

Article  CAS  Google Scholar 

Lawrence JR, Kopf G, Headley JV, Neu TR (2001) Sorption and metabolism of selected herbicides in river biofilm communities. Can J Microbiol 47(7):634–641. https://doi.org/10.1139/w01-061

Article  CAS  PubMed  Google Scholar 

Lawrence JR, Chenier MR, Roy R, Beaumier D, Fortin N, Swerhone GDW, Neu TR, Greer CW (2004) Microscale and molecular assessment of impacts of nickel, nutrients, and oxygen level on structure and function of river biofilm communities. Appl Environ Microbiol 70(7):4326–4339. https://doi.org/10.1128/aem.70.7.4326-4339.2004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lawrence JR, Swerhone GD, Kuhlicke U, Neu TR (2007) In situ evidence for microdomains in the polymer matrix of bacterial microcolonies. Can J Microbiol 53(3):450–458. https://doi.org/10.1139/w06-146%m17538657

Article  CAS  PubMed  Google Scholar 

Lei C, Hu D, Ackerman E (2009) Clay nanoparticle-supported single-molecule fluorescence spectroelectrochemistry. Nano Lett 9(2):655–658. https://doi.org/10.1021/nl802998e

Article  CAS  PubMed  Google Scholar 

Li B, Bishop PL (2004) Micro-profiles of activated sludge floc determined using microelectrodes. Water Res 38(5):1248–1258. https://doi.org/10.1016/j.watres.2003.11.019

Article  CAS  PubMed  Google Scholar 

Lis H, Sharon N (1986) Lectins as molecules and as tools. Annu Rev Biochem 55(1):35–67. https://doi.org/10.1146/annurev.bi.55.070186.000343

Article  CAS  PubMed  Google Scholar 

Martin MM, Lindqvist L (1975) The pH dependence of fluorescein fluorescence. J Lumin 10(6):381–390. https://doi.org/10.1016/0022-2313(75)90003-4

Article  CAS  Google Scholar 

Müller H, Bosch J, Griebler C, Damgaard LR, Nielsen LP, Lueders T, Meckenstock RU (2016) Long-distance electron transfer by cable bacteria in aquifer sediments. ISME J 10(8):2010–2019. https://doi.org/10.1038/ismej.2015.250

Article  CAS  PubMed  PubMed Central  Google Scholar 

Neu TR, Lawrence JR (2016) Laser microscopy for the study of biofilms: issues and options. In: Romaní AM, Guasch H, Balaguer MD (eds) Aquatic biofilms: ecology, water quality and wastewater treatment. Caister Academic Press, Norfolk, pp 29–46

Google Scholar 

Neu TR, Manz B, Volke F, Dynes JJ, Hitchcock AP, Lawrence JR (2010) Advanced imaging techniques for assessment of structure, composition and function in biofilm systems. FEMS Microbiol Ecol 72(1):1–21. https://doi.org/10.1111/j.1574-6941.2010.00837.x

Article  CAS  PubMed  Google Scholar 

Nguyen HD, Cao B, Mishra B, Boyanov MI, Kemner KM, Fredrickson JK, Beyenal H (2012) Microscale geochemical gradients in Hanford 300 Area sediment biofilms and influence of uranium. Water Res 46(1):227–234. https://doi.org/10.1016/j.watres.2011.10.054

Article  CAS  PubMed  Google Scholar 

Nielsen LP, Risgaard-Petersen N, Fossing H, Christensen PB, Sayama M (2010) Electric currents couple spatially separated biogeochemical processes in marine sediment. Nature 463(7284):1071–1074. https://doi.org/10.1038/nature08790

Article  CAS  PubMed  Google Scholar 

Obst M, Ingino P, Hitchcock A, Prabu V, Picard A (2018) Redox-chemistry of environmental biofilms probed on the submicron scale by in-situ electrochemistry scanning transmission (soft) X-ray microscopy. Microsc Microanal 24(S2):502–505. https://doi.org/10.1017/S1431927618014745

Article  Google Scholar 

Panchuk-Voloshina N, Haugland RP, Bishop-Stewart J, Bhalgat MK, Millard PJ, Mao F, Leung W-Y, Haugland RP (1999) Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright photostable conjugates. J Histochem Cytochem 47(9):1179–1188. https://doi.org/10.1177/002215549904700910

Article  CAS  PubMed  Google Scholar 

Privat JP, Delmotte F, Mialonier G, Bouchard P, Monsigny M (1974) Fluorescence studies of saccharide binding to wheat-germ agglutinin (Lectin). Eur J Biochem 47(1):5–14. https://doi.org/10.1111/j.1432-1033.1974.tb03661.x

Article  CAS  PubMed  Google Scholar 

Proia L, Romaní AM, Sabater S (2012) Nutrients and light effects on stream biofilms: a combined assessment with CLSM, structural and functional parameters. Hydrobiologia 695(1):281–291. https://doi.org/10.1007/s10750-012-1117-x

Article  CAS  Google Scholar

留言 (0)

沒有登入
gif